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A B S T R A C T

This note analytically investigates non-reciprocal wave dispersion in locally resonant acoustic metamaterials.
Dispersion relations associated with space-time varying modulations of inertial and stiffness parameters of the
base material and the resonant components are derived. It is shown that the resultant dispersion bias onsets
intriguing features culminating in a break-up of both acoustic and optic propagation modes and one-way local
resonance band gaps. The derived band structures are validated using the full transient displacement response of
a finite metamaterial. A mathematical framework is presented to characterize power flow in the modulated
acoustic metamaterials to quantify energy transmission patterns associated with the non-reciprocal response.
Since local resonance band gaps are size-independent and frequency tunable, the outcome enables the synthesis
of a new class of sub-wavelength low-frequency one-way wave guides.

1. Introduction

The last few decades have witnessed a spurt of activity investigating
the use of metamaterials to realize unique solutions to problems in vi-
broacoustic mitigation, wave cloaking, focusing, guidance, and others
[1–3]. Locally resonant acoustic metamaterials (LRAMs) are sub-wa-
velength structures that exhibit mechanically tunable, size-in-
dependent, low frequency band gaps [4]. In their common form, LRAMs
comprise a base (outer) structure that houses a series of uniformly
distributed inner resonators (Fig. 1a), which contribute to the rise of
unique dispersion properties. Local resonance band gaps in LRAMs stem
from their ability to significantly attenuate incident excitations over a
narrow frequency spectrum at the vicinity of the resonators’ eigen-
frequencies [5]. As such, LRAMs have been recently investigated in the
context of discrete lumped mass systems [6,7], elastic bars [8,9], flex-
ural beams [10–13], as well as 2D membranes and plates [14–16].

Owing to their periodic nature, band structures of LRAMs can be
computed using a Bloch-Floquet wave solution. These structures convey
the wave dispersion relations ω μ( ), where ω is the frequency and μ is
the dimensionless wavenumber. Due to elastodynamic reciprocity, band
structures of LRAMs are symmetric about =μ 0 implying that waves
travel from point A to B in the same manner they would travel from B to
A [17]. Breaking this reciprocity in 1D systems creates a bias in the
band structures intended to force waves to travel differently in op-
posing directions [18,19]. Non-reciprocity in metamaterials have been
very recently utilized to synthesize, among others, acoustic guides [20]

and static displacement amplifiers [21]. Means to induce non-reciprocal
behavior include introduction of large nonlinearities, topological fea-
tures, and material fields that travel in time and space [22,23]. The
latter has been recently demonstrated in elastic metamaterials using a
perturbation approach [24]. Although very challenging, several efforts
have recently investigated achieving material variations in time using
negative capacitance piezoelectric shunting [25], inductance-based
resonance control [26], and magnetoelastic materials [27]. In this
work, we build on the work developed in [28] for non-resonant space-
time traveling phononic lattices to develop a mathematical framework
that captures and predicts non-reciprocal dispersion physics in lumped
time-traveling LRAMs. After analytically deriving the asymmetric wave
dispersion relations based on a defined unit-cell, we validate the fra-
mework using the finite band structures reconstructed from the actual
response of an LRAM chain of a known length. Furthermore, we present
a structural intensity analysis of the non-reciprocal LRAMs and derive
the power flow maps associated with the non-reciprocal energy trans-
mission in the LRAM as a result of the imposed modulations.

This note is organized in four sections. Following the introduction,
we begin by deriving the governing equations for spatiotemporally
modulated mass and stiffness properties for both the base and the re-
sonant components of a lumped LRAM to obtain the non-reciprocal
dispersion relations. Through numerical simulations, a 2-Dimensional
Fourier Transform (2D-FT) is then performed to validate the obtained
band structure derived analytically. To further investigate the non-re-
ciprocal behavior, in the subsequent section we investigate the LRAM

https://doi.org/10.1016/j.apacoust.2017.12.028
Received 3 October 2017; Received in revised form 14 December 2017; Accepted 20 December 2017

⁎ Corresponding author.
E-mail address: mnouh@buffalo.edu (M. Nouh).

Applied Acoustics 133 (2018) 210–214

0003-682X/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0003682X
https://www.elsevier.com/locate/apacoust
https://doi.org/10.1016/j.apacoust.2017.12.028
https://doi.org/10.1016/j.apacoust.2017.12.028
mailto:mnouh@buffalo.edu
https://doi.org/10.1016/j.apacoust.2017.12.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2017.12.028&domain=pdf


using the energy-based structural intensity analysis (SIA) to capture the
power flow patterns within the non-reciprocal range. Finally, the con-
clusions are briefly summarized.

2. Dispersion relations

2.1. Mathematical formulation

To onset acoustic non-reciprocity, the parameters of the LRAM have
to undergo a traveling-wave like modulation. As such, we begin by
deriving mass m and stiffness k properties which travel simultaneously
in time and space. Contrary to the conventional unit cell definition, we
define a unit cell of a subset of lumped masses, spanning a length d, that
constitute a single cycle of property variation (Fig. 1a). We also denote
each spring-mass system and its resonator as a sub-cell. Consequently,
we consider harmonic variation of m and k as follows

= + +∼m t m m ω t κ j( ) cos( )γ
j

γ γ 0 0 (1)

= + +∼k t k k ω t κ j( ) cos( )γ
j

γ γ 0 0 (2)

where, as depicted in Fig. 1b, = …j J1, , is the sub-cell index and J is the
total number of sub-cells within a unit cell. Also =γ a b, refers to the
base masses and local resonators, respectively. kγ and mγ are the
average values of both variations while

∼kγ and ∼mγ are the oscillatory
components. Further, ω0 and =κ π J2 /0 represent the temporal and
spatial modulation frequencies. In practice, such modulations can be
physically realized via piezoelectric or magnetoelastic actuation [29].
Equations governing the motion of the jth sub-cell can be derived as
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where ua
j and ub

j denote the base mass and resonator displacements,
respectively. Using the Floquet-Bloch theorem [30,31], and exploiting
the LRAM’s periodicity, the unit cell displacement can be related to its
adjacent ones via =+ −u u eγ

J
γ

iμ1 1 and =u u eγ γ
J iμ0 , where i is the ima-

ginary unit. Upon establishing periodic boundary conditions, the mo-
tion equations of the entire cell can be represented in compact matrix
notation as

+ =t t μM u K u 0( ) ¨ ( , ) (5)

where = … …u u u u u uu { , , , | , , , }a a a
J

b b b
J T1 2 1 2 is the displacement field, and t μK( , )

and tM( ) are the unit cell stiffness and mass matrices. Being periodic
functions of time, both K and M can be expanded using a complex
Fourier series as follows
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where Mp and Kp are the corresponding Fourier matrix coefficients.
Henceforth, we assume a harmonic solution with a time-modulated
amplitude of the following form
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where ̂un is the nth vector of displacement amplitudes. Substituting Eqs.
(6)–(8) into (5), and employing harmonic function orthogonality, we
obtain
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in which N is the truncated limit of the infinite series and s is an ar-
bitrary integer within the interval −N N[ , ]. As n

q
,

( ), with =q 0,1,2, is a
×J J2 2 matrix for any s and n combination. It is defined as
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Eqs. (9)–(12) can be combined into a quadratic eigenvalue problem
[32]

+ + =ω ωΦ Φ Φ U 0( )2 1 0
2 (13)

where the new vector ̂U is obtained by stacking all ̂un for = −n N to N,
sequentially. The block matrix Φq is of size + × +J N J N2 (2 1) 2 (2 1)
and each of its elements is a sub-matrix defined by
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Eq. (13) requires the matrix multiplied by ̂U to be singular in order to
yield a non-trivial solution, which describes the acoustic wave disper-
sion in the LRAM lattice. If an index p is defined such that = −p s n,
explicit forms of Mp and Kp, which constitute As n

q
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( ), can be found as
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where = …r J1, , . The definitions of Ψ Ψ,1 −1 and Ψ0 are given by
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where = −ψ ej
i κ jℓ ℓ 0 and = −ℓ 1,0,1.

Fig. 1. (a) Lumped realization of a locally resonant acoustic metamaterial (LRAM) and (b)
mass and stiffness modulation profile within a unit cell.
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