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A B S T R A C T

Partial discharge (PD) is one of the main diagnosis methods for the insulation aging of large motors. A data
compression denoising method based on the empirical mode decomposition (EMD) algorithm is proposed ac-
cording to the weak and large disturbances of large motor PD signals. A simulation model is constructed to verify
the effectiveness of the proposed algorithm. Furthermore, the denoising effect of the proposed algorithm is
compared with that of the db2 and db8 wavelets in the experiments. The simulation and experimental results
show that a data compression denoising algorithm based on EMD can achieve the same denoising effect with
those based on db2 and db8 wavelets. The proposed algorithm is even better in terms of relative error and mean
square error. For actual signal processing, the data compression denoising algorithm is better than the other
algorithms and does not lose the original signal energy. The PD ultrasonic signals are spectrally analyzed by
using HHT, and signal energy distribution in time and frequency can be clearly described. The main PD ultra-
sonic signal characteristics can be extracted currently from the marginal and Hilbert spectra. The results of this
study will be helpful for the diagnosis of PD faults in large motors.

1. Introduction

Large electric machines play a key role in electric power systems
and in every industrial production department. Thus, the safe operation
of this machine has received increasing attention from researchers. The
motor of these machines is influenced by thermal, electrical, and me-
chanical stresses and the external environment; thus, a weak insulation
produces partial discharge (PD) in the local field. A long discharge
duration will eventually cause insulation breakdown, thus leading to
motor damage. According to Japanese and European statistics, 15–35%
of motor faults are related to stator winding insulation [1]. To date, the
PD method is used locally and abroad to diagnose the aging state of the
main insulation of high-voltage motor windings. This method has been
used for more than 70 years and has become a common monitoring
technique [2,3]. However, the operation environment of a motor has
weak PD signals with great interference. A PD monitoring system does
not only include a highly sensitive sensor and signal processor but also
an algorithm that efficiently eliminates noise in the software to obtain a
real PD signal.

The wavelet analysis method is usually used in algorithms to
eliminate noise for PD in the last few decades [4–7]. Considerable re-
search works have been conducted on eliminating noise from PD signals

[4–12]. Not only wavelet and complex wavelet transforms but also a
direct notch filter is applied to suppress PD signal interferences. The
results show a significantly improved signal–to–noise ratio (SNR)
[8–12]. Signal processing algorithms have changed rapidly in recent
years. In particular, Hilbert–Huang transform (HHT) theory is proposed
and applied. This theory is a major breakthrough in non-stationary
signal processing. Local and foreign researchers have used HHT as a
new signal processing tool in fields such as sound analysis [13], time-
series analysis of financial data [14], low-frequency oscillations of
power systems [15], mechanical fault diagnosis [16], seismic signal
analysis [17], and medical signal processing [18].

PD ultrasonic signals in large motors are typical non-stationary
signals. Furthermore, HHT depends on the signal itself. Therefore, the
decomposition of signal data has real physical meaning and high
time–frequency resolution. This study proposes a data compression
method that uses HHT to eliminate noise in PD ultrasonic signals.
Furthermore, HHT is used to analyze two types of PD signals. This
analysis is the preliminary preparation for the fault feature extraction
and diagnosis of large motor insulation faults.
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2. HHT and signal processing methods

2.1. Basic HHT theory

HHT is a novel analysis method for non-linear and non-stationary
data [19]. Empirical mode decomposition (EMD) is a key part of the
HHT method. In EMD, any complicated data set can be decomposed
into a finite number of intrinsic mode functions (IMFs) that admit well-
behaved Hilbert transforms. An IMF is as a function that satisfies the
following conditions [20]: (1) the number of extrema and zero crossings
in a whole data set is equal or should differ by one at most; (2) the mean
value of an envelope defined by using local maxima and local minima is
zero at any data point.

Huang [19,20] states that the Hilbert transform of these functions
are “well-behaved” and can be used to calculate instantaneous fre-
quencies. The EMD algorithm is based on a recursive structure called
sifting. The careful application of sifting produces physically plausible
IMFs. Given any signal X(t), IMFs are obtained by the following steps
[19,21,22]:

(1) i= j = 1 is initialized.
(2) All of the local extrema of X(t) is identified and categorized into two

sets: the maxima and minima.
(3) All local maxima is connected by a cubic spine line to form an upper

envelope Xupper(t). The procedure for local minima is repeated to
form a lower envelope Xlower(t). Both upper and lower envelopes
should encompass all data between the envelopes.

(4) The mean signal Mi,j(t) = (Xupper(t) + Xlower(t))/2 is calculated.
(5) The mean Mi,j(t) is subtracted from X(t) to obtain the first candidate

to IMF Hi,j(t): Hi,j(t) = X(t) − Mi,j(t).
(6) Sifting conditions are compared: if Hi,j(t) satisfies the definition of

an IMF, the process is halted; otherwise, Hi,j(t) is considered the
signal for the next round of sifting and j= j+1. The algorithm
then restarts from Step 2. After resifting up to k times, the first IMF
is denoted by ci(t) if Hi,k(t) becomes an IMF.

(7) The criteria is stopped: residue ri(t)=X(t)− ci(t) is set; if ri(t) is
less than a certain predetermined value or becomes non-oscillatory,
then the number of IMFs depends on the signal and is not fixed, thus
indicating that the sifting process can be stopped. Otherwise, ri(t) is
considered the signal in the subsequent sifting process and
i= i+1. The algorithm then restarts from Step 2. The process ends
when rn(t) has one extrema at most after n times of repetition.

In summary, the following is obtained:
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Thus, the original signal X(t) is decomposed into n IMFs and residue
rn(t), which can be either an adaptive trend or a constant.

2.2. EMD-based denoising

IMFs and a residual function are obtained after the original signal is
decomposed by the EMD algorithm. IMFs comprise several different
frequency segments. These segments serve as bases for a spa-
tial–temporal filter of the original signal, which is composed of different
noise and target signal frequencies [23,24]. A spatial–temporal filter is
constructed on the basis of the frequency of IMF components to set the
filter parameters, the IMF components of noise can then be directly
eliminated to obtain a useful target signal only. However, the actual
original signals collected in the field often include noise signals that
cover the whole frequency range of a target signal. Therefore, realizing
ideal noise elimination by using only temporal and spatial filters is
impossible. Furthermore, a target signal is sometimes removed, thus
resulting in the loss of the original signal energy.

For the wavelet denoising principle, the high-frequency part of a
signal will be compressed when wavelets decompose the original signal.
By setting the data compression ratio, the high-frequency part of signal
wavelet decomposition is assumed to be less than a set value and the
subsequent high-frequency parts are expressed as noise. Thus, high-
frequency term is set to zero. Similarly, for the EMD data compression
algorithm, the EMD of the original signal is decomposed into numerous
different frequency segments of the IMF and residual function. At this
point, noise is decomposed into different frequency segments of the IMF
and residual amount, and less noise occurs in IMF decomposition than
in the original signal. Therefore, each IMF component that is less than a
set data compression value is considered noise and is set to zero.
Finally, each IMF is reconstructed by using EMD after data compression
to eliminate noise in the original signal. The principle block diagram is
shown in Fig. 1. Therefore, reconstructed signal Y(t) can be expressed as

Fig. 1. Structure diagram of EMD data compression de-
noising.

Fig. 2. Experimental PD model. 1 – Copper conductor; 2 – main insulation layer; 3 – low-
resistance corona-preventing layer; 4 – cavity; 5 – high-resistance corona-preventing
layer; 6 – oil-contaminated or damaged corona-preventing layer; 7 – point contact; 8 –
gap; and 9 – stator core. (a) Experimental model of surface PD; (b) Experimental model of
slot PD.

Fig. 3. System framework.

Table 1
Operating specifications of ultrasonic sensor.

Item Parameter

Operating frequency range 30–140 kHz
Resonant frequency 95 kHz
Sensitivity >80 dB
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