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a b s t r a c t

The analogy of a vibrating string to an electrical transmission line with the correspondences of the dis-
placement to the voltage and the rigid end to the short circuit and the calculations for the hammer–string
force in the well known finite difference form of the wave equation for a struck string are applied to build
a transmission line based struck string model. The proposed model is validated by showing that the dis-
placements and the forces exerted on the string at the contact with a hammer from the proposed model
are consistent with those from the finite difference form.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior of a vibrating string has been studied in various
ways. In the continuous time domain, a string has been modeled
with an electrical transmission line based on the fact that oppo-
sitely traveling waves exist on both the string and the transmission
line [1–3]. In the discrete time domain, a string has been modeled
with digital waveguides which consist of two digital delay lines
carrying sampled traveling waves [4]. Aside from these models,
the wave equation governing the behavior of a flexible string has
been solved for various boundary conditions including rigid ends
and ways of exciting the string like plucking or striking [5]. As a
numerical approach, the wave equations for a plucked, a struck,
and a bowed string have been approximated to finite difference
forms [6]. Various numerical models of the hammer–string inter-
action were discussed and the finite difference form of the wave
equation for a struck string with stiffness and damping was pro-
posed in a paper by Chaigne and Askenfelt [7].

In transmission line based string models, the displacement and
the rigid end of a string had been analogized to the current and the
open circuit on a transmission line, respectively [1–3]. However, it
was found that the displacement and the rigid end correspond to
the voltage and the short circuit through the theory of a transmis-
sion line and the circuit simulations, respectively. Based on these
discoveries, the transmission line based plucked string model
and the circuit based classical guitar model have been built [8,9].
The circuit based classical guitar model integrates the circuit

model for a string, that is, the transmission line based plucked
string model, with that for a body of guitar. In Kock’s transmission
line based struck string model, the hammer collision has been
modeled with a switch in series with an inductor across a trans-
mission line at the location corresponding to the contact with a
hammer. The nonelastic compression of the felt on the hammer
was suggested to be implemented by a leak in an additional capac-
itor in series with the inductor, which is based on the correspon-
dences of the displacement and the rigid end on the string to the
current and the open circuit on the transmission line, respectively
[1]. Contrary to the above mentioned model, the same correspon-
dences, which were used in the transmission line based plucked
string model, and the calculations for the hammer–string force in
the well known finite difference form of the wave equation for a
struck string are applied to develop a transmission line based
struck string model. Since a transmission line is a linear device,
the stiffness causing the nonlinearity of a string together with
damping as in a paper by Chaigne and Askenfelt are not considered,
and thus the finite difference form for a flexible string with no
damping by Giordano and Nakanishi is taken as a target the pro-
posed model has to achieve [6,7]. This model is built such that
its behavior in terms of the displacement and the force exerted
on the string at the contact point are consistent with those from
the finite difference form. The proposed model is built and simu-
lated using PSpice.

The paper is organized as follows; the finite difference form of
the wave equation for a struck string is reviewed in Section 2. In
Section 3, the transmission line based struck string model is
proposed, and the model outputs are compared with those from
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the finite difference form, and then conclusions are drawn in
Section 4.

2. Review of the finite difference form of the wave equation for
a struck string

Piano hammers are known to act as nonlinear springs [6]. The
hammer–string force can be approximated to be

Fhðzf Þ ¼ Kjzf jp ð1Þ
where zf is the amount that the felt covering a hammer is com-
pressed by as the hammer hits a string, K is an effective stiffness
constant, and the exponent p is the strength of the nonlinearity. It
is known that p � 3 generally gives a reasonable description of real
hammers.

The wave equation for an ideal flexible string with no damping
is given by

@2y
@t2

¼ c2
@2y
@x2

ð2Þ

where y(x, t) is the displacement of the string, and x and c are the
distance and the velocity of a wave along the string, respectively.
The velocity is given by c ¼ ffiffiffiffiffiffiffiffiffi

T=l
p

where T is the tension, and l is
the mass per unit length of the string. By sampling time and space
of the wave Eq. (2) with a time step, Dt and a spatial step, Dx as y(x,
t)? y(iDx, nDt)? y(i, n) and then multiplying both sides by (lDx)
to make each of them the force exerted on an element of the string
and finally including the hammer–string force given by Eq. (1), the
finite difference form of the wave equation for a struck string is
derived as

ðlDxÞ yði;nþ 1Þ þ yði;n� 1Þ � 2yði;nÞ
ðDtÞ2

� ðlDxÞc2 yðiþ 1;nÞ þ yði� 1; nÞ � 2yði;nÞ
ðDxÞ2

" #
þ Fh ð3Þ

The displacement of the string at time step n + 1 is derived from
Eq. (3) as

yði;nþ 1Þ ¼ 2ð1� r2Þyði;nÞ � yði;n� 1Þ þ r2½yðiþ 1;nÞ þ yði

� 1;nÞ� þ ðDtÞ2
lDx

Fh ð4Þ

where r = cDt/Dx. The displacements at both ends are set to zero at
the beginning of a program of the finite difference form, and are not
updated, which corresponds to rigid ends. Newton’s second law is
applied to describe the motion of the hammer as

mhahðnÞ ¼ �Fh ð5Þ
where ah(n) is the hammer acceleration, and mh is its mass. Using
the Euler method, the position of the hammer, zh and its velocity,
vh are given as

zhðnþ 1Þ ¼ zhðnÞ þ vhðnÞDt
vhðnþ 1Þ ¼ vhðnÞ þ ahðnÞDt

ð6Þ

For each time step, n, the hammer–string force using Eq. (1) is
calculated with zf = ycontact(n) � zh(n) where ycontact(n) is the string
displacement at the contact with the hammer. Then, the string dis-
placement at the contact point and those at other locations except
both ends are calculated according to Eq. (4) with the updated Fh at
the time step, n � 1 and with Fh = 0, respectively. At the same time,
the hammer acceleration, the hammer velocity and position are
updated using Eqs. (5) and (6), respectively. Whether the hammer
loses contact with the string is decided by monitoring the sign of zf.
When it becomes positive, it is taken as losing contact with sting,

and thus the hammer–string force, Fh in Eq. (4) becomes 0. From
this moment on, the string displacement for every element is
updated using Eq. (4) with Fh = 0. On the other hand, the force
exerted by the struck string on a bridge is given by

Fbridge ¼ T
½yðN;nÞ � yðN þ 1;nÞ�

Dx
ð7Þ

where N is the number of string elements, and y(N + 1, n) = 0 corre-
sponding to the rigid end.

The time evolutions of the hammer–string force and the dis-
placement of the string at the contact point for the initial hammer
velocities of vh = 0.5 m/s and vh = 4 m/s are shown in Figs. 1–4,
respectively. Figs. 5 and 6 show the magnitudes of FFTs for the
forces exerted on the bridge for each case, respectively, fromwhich
it is expected that the high frequency harmonics would be richer in
the sound with vh = 4 m/s in addition to the increased loudness.

3. Transmission line based struck string model

The correspondences of the displacement to the voltage and the
rigid end to the short circuit, which were validated in the transmis-
sion line based plucked string model, and the calculations for the
hammer–string force in the finite difference form of the wave
equation for a struck string, which are reviewed in Section 2, are
applied to build a transmission line based struck string model.
The calculations are implemented into a circuit in the proposed
model. The model for the initial hammer velocity of 0.5 m/s with
other parameters to be the same as in the finite difference form
is presented in Fig. 7.

In Fig. 7, the transmission lines, T1 and T2 constitute a string,
and other parts function as the hammer striking. The time delays
of the transmission line, T1 and T2 are set to 0.24 ms and
1.67 ms, respectively, which corresponds to striking the string at
a distance one eighth from the left end, and the note of C4 as in
the finite difference form. The characteristic impedance of T1 and
T2 is set to 1 kX arbitrarily. The two NOR gates, U3A and U4B con-
stitute a SR latch whose output depends on whether the hammer
keeps contact with the sting. The output of U4B is set to 5 V at
t = 0 resulting in closing the voltage-controlled switch, S1, by
which the hammer–string force starts to be delivered to the string.

Fig. 1. Hammer–string force for the initial hammer velocity of vh = 0.5 m/s. The
length of the string with both ends rigidly fixed is 0.62 m, Dx = 0.62 mm, r = 1,
T = 650 N, K = 1.0 � 1011 N/m1/3, p = 3, and mh = 3.3 g. The fundamental vibrating
frequency is tuned to 262 Hz corresponding to the C4 note, and the string is struck
at a distance one eighth from an end.
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