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Abstract: In this paper, a real-time and distributed solution to Complete Vehicle Energy
Management (CVEM) is presented using a receding control horizon in combination with a
dual decomposition. The dual decomposition allows the CVEM optimization problem to be
solved by solving several smaller optimization problems. The receding horizon control problem
is formulated with variable sample intervals, allowing for large prediction horizons with only a
limited number of decision variables and constraints. The receding horizon control problem
is solved for a case study of a hybrid heavy-duty vehicle, equipped with a high-voltage
battery system and a refrigerated semi-trailer. Simulations demonstrate that close to optimal
performance in terms of fuel consumption is obtained. The average execution time is 11.4 ms
demonstrating that the proposed solution method is indeed real-time implementable.
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1. INTRODUCTION

Hybrid technology enables vehicles to make a powersplit
between the primary power device, e.g., an internal com-
bustion engine and the secondary power device, e.g., an
electric machine, so that the fuel consumption can be re-
duced. However, the power flows in the vehicle are not lim-
ited to the propulsion system only. Particularly for heavy-
duty vehicles, a significant amount of power is consumed
by auxiliary systems, such as a refrigerated semi-trailer, an
air supply system and coolant systems. As global efficiency
at vehicle level is not guaranteed by optimizing each of the
components separately, energy management needs to be
done on a complete vehicle level. We refer to this desired
energy management strategy as Complete Vehicle Energy
Management (CVEM), see (Kessels et al., 2012). Behavior
of each auxiliary component is generally unique and each
auxiliary adds at least one state and decision variable to
the CVEM problem. Examples of state variables include
temperature in the refrigerated semi-trailer, air pressure
in the air supply system and temperature of the fluid in
the engine coolant system.

Well-known real-time methods for energy management are
equivalent consumption minimization strategies (ECMS)
with various adaptive mechanisms based on drive cy-
cle prediction, driving patterns recognition and state-of-
charge feedback, see (Onori and Serrao, 2011) and the ref-
erences therein. To improve anticipation on future events
using road preview information, a significant amount of
work can be found on methods that are based on (stochas-
tic) Model Predictive Control (MPC), see e.g., (Di Cairano
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et al., 2014; Schepmann and Vahidi, 2011; Borhan et al.,
2012). All aforementioned methods use a centralized con-
trol approach to solve the energy management problem for
a hybrid vehicle without auxiliaries. By adding more deci-
sion variables and states to the problem, as with CVEM,
the centralized controller can become computationally de-
manding and is not scalable without revising the complete
controller.

For this reason, distributed solutions for energy man-
agement start to appear. Many interesting solutions for
distributed control can be found from other fields, see e.g.,
(Stephens et al., 2015) for distributed energy demand side
management and (Fardad et al., 2010) for optimal control
of vehicle formations. The application of distributed so-
lution methods to the CVEM problem in the automotive
field is only recently starting to attract attention. In (Chen
et al., 2014), a real-time implementable game-theoretic
approach to CVEM is shown, where the drive cycle is only
predicted over a short horizon. In (Nguyen et al., 2014),
a game-theoretic approach in combination with MPC is
used to arrive at a distributed solution, while real-time
implementation is not considered. In (Nilsson et al., 2015),
the computation is distributed using the Alternating Di-
rection Method of Multipliers (ADMM), while ideas from
ECMS are used to calculate the equivalent costs at a su-
pervisory level. In (Romijn et al., 2014), the computation
is distributed via a dual decomposition without using a
supervisory level which allows drive cycle prediction to be
readily taken into account.

This paper proposes a computationally efficient implemen-
tation of the method presented in (Romijn et al., 2014).
The dual decomposition allows the large-scale optimiza-
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Fig. 1. Hybrid powertrain, including an internal combus-
tion engine (ICE), an electric machine (EM), a high-
voltage battery and a refrigerated semi-trailer.

tion problem to be solved by solving several smaller opti-
mization problems. Furthermore, the approach is scalable
in terms of adding components. However, CVEM, as in
(Romijn et al., 2014), is solved for a relatively long horizon
with a fixed sample interval, which allows computing the
optimal solution for CVEM offline. This solution method
is unsuitable for real-time implementation. To resolve this
issue, we propose to use the receding horizon principle
and apply the same dual decomposition to this problem.
Computational limitations due to real-time implementa-
tion restrict the maximum allowable number of decision
variables. Therefore, varying sample intervals will be used
in our problem formulation to create a large prediction
horizon, while having only a limited number of decision
variables and constraints. The approach is similar to move
blocking, see, e.g., (Cagienard et al., 2007), but is compu-
tationally less expensive due to a reduction in constraints.
The receding horizon control approach in this paper is in
line with distributed model predictive control, see, e.g.,
(Maestre and Negenborn, 2014). Owing to the problem
formulation, a new implementation is proposed.

2. TOPOLOGY AND PROBLEM FORMULATION

We reconsider in this paper the case study of (Romijn
et al., 2014), consisting of a heavy-duty hybrid vehicle that
includes an internal combustion engine (ICE), an electric
machine (EM), a high-voltage battery and a refrigerated
semi-trailer. The topology is schematically shown in Fig. 1,
in which Pf and Pp denote the ICE’s fuel and mechanical
power, respectively, Pe and Pem the EM’s electrical and
mechanical power, respectively, Pb and Pst the battery’s
electrical and stored chemical power, respectively, Pld and
Pth the refrigerated semitrailer’s electrical and thermal
power, respectively, Pbr and Pr is the mechanical brake
power and requested drive power, respectively and Est

denotes the battery state of energy and Eth denotes the
thermal energy in the refrigerated semi-trailer.

The main objective is to minimize the predicted cumula-
tive fuel consumption, at each time instant k∈N, given by

J(k) =

n
�

ℓ=1

τ(ℓ) ṁf(Pp(k + ℓ− 1|k)), (1)

subject to dynamics and conversion efficiencies of the
components in Fig. 1. In this expression, n is the number
of decision variables, Pp(k + ℓ − 1|k) is the predicted
engine power at time instant k + ℓ − 1 using information
available at time instant k and τ(ℓ) ∈ R+ is a variable
sample interval. In this formulation, the prediction horizon
Np =

�n
ℓ=1 τ(ℓ) ∈ R+ can be large, without increasing

the number of decision variables n. Note that in (Romijn
et al., 2014), we had that τ(ℓ) = 1 for all ℓ ∈ {1, . . . , n}.
The application of the dual decomposition to the CVEM
problem with variable sample intervals remains the same
and details are given in (Romijn et al., 2014). A summary
of the notation, the component models and the problem
formulation are given in this section.

2.1 Notation

The CVEM problem can be formulated as a static opti-
mization problem, as was done in (Romijn et al., 2014).
To formulate this problem over a receding horizon, we
introduce the following notation:

Pi(k) = [Pi(k|k), . . . , Pi(k + n− 1|k)]T ∈ R
n, (2a)

Em(k) = [Em(k + 1|k), . . . , Em(k + n|k)]T ∈ R
n, (2b)

αh,j(k) = [αh,j(k|k), . . . , αh,j(k + n− 1|k)]T ∈ R
n, (2c)

τ = [τ(1), . . . , τ(n)]T ∈ R
n, (2d)

for k ∈ N, i ∈ {f, p, em, e, b, ld, st, th br, r}, j ∈ {0, 1, 2},
m ∈ {st, th} and h ∈ {p, em}. In this notation, ℓ|k
denotes decisions of variables Pi or predictions of states
Em at (discrete) time instant ℓ based on information
at (discrete) time instant k. Speed-dependent efficiency
coefficients αh,j(ℓ|k) = fh,j(ω(ℓ|k)), are used to model the
ICE and the EM, respectively, with ω(ℓ|k) the predicted
engine speed. It is assumed that the EM runs at the
same speed as the ICE. The functions fh,j(ω(ℓ|k)) are not
part of the optimization problem because engine speed is
predicted and can therefore be of any type.

Because of the variable sample interval τ(ℓ) = t(k + ℓ) −
t(k+ℓ−1), we need to revise the formulation of the energy
buffer state dynamics when compared to (Romijn et al.,
2014). The energy in the high-voltage battery and the
refrigerated semi-trailer are represented by a first-order
differential equation, i.e.,

d
dt
Em(t) = ÃmEm(t) + B̃mPm(t), (3)

for m ∈ {st, th} and where Ãm and B̃m are scalars. This
differential equation allows us to make a prediction of
Em(k + ℓ|k) = Em(t(k + ℓ)), for a given initial condition
Em(k+ℓ−1|k) = Em(t(k+ℓ−1)), by using the convolution
integral

Em(k + ℓ|k) = eÃmτ(ℓ)Em(k + ℓ− 1|k)

+

� τ(ℓ)

0

eÃmsB̃mPm(t(k + ℓ)− s)ds. (4)

If we restrict the power Pm to be piecewise constant, i.e.,
Pm(k + ℓ − 1|k) = Pm(s) for s ∈ [t(k + ℓ − 1), t(k +

ℓ)] and ℓ ∈ {1, . . . , n} and define Am(ℓ) = eÃmτ(ℓ) and

Bm(ℓ) =
� τ(ℓ)

0 eÃmsB̃mds, then expression (4) can be
grouped for all ℓ ∈ {1, . . . , n} and written as

Em(k) = ΦmEm(k) + ΓmPm(k), (5)

with

Γm =

















Bm(1) 0 . . . 0

Am(2)Bm(1) Bm(2)
. . . 0

.

.

.
. . . 0

n
�

ℓ=2

Am(ℓ)Bm(1)

n−1
�

ℓ=2

Am(ℓ)Bm(2) . . . Bm(n)


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, (6a)
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