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Due to their small size, differential microphone arrays (DMAs) are very attractive. Moreover, they have
been effective in combating noise and reverberation. Recently, a new class of DMAs of different orders
have been developed with the MacLaurin’s series and the frequency-independent patterns. However,
the MacLaurin’s series does not approximate well the exponential function, which appears in the general
definition of the beampattern, when the intersensor spacing is not small enough. To circumvent this
problem, we propose in this paper to approximate the exponential function with the Jacobi-Anger expan-
sion. Based on this approximation and the frequency-independent Chebyshev patterns, we derive first-,
second-, and third-order DMAs. Furthermore, in order to improve the robustness of DMAs against white
noise amplification, we propose to use more microphones combined with minimum-norm filters. It is
also shown that the Jacobi-Anger expansion is optimal from a mean-squared error perspective.
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Simulations are carried out to evaluate the performance of the proposed DMAs.
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1. Introduction

It is well known that noise and reverberation are detrimental to
the speech quality and intelligibility. As a consequence, the perfor-
mance of many applications, such as hands-free telecommunica-
tion and hearing aids, can be severely degraded. Over the past
decades, approaches based on microphone arrays and beamform-
ing techniques have been widely studied in the difficult context
of noisy and reverberant environments [1-4]. Recently, methods
based on differential microphone arrays (DMAs) have received a
great deal of attention due to their small size and potential of high
directivity factors [5-8]. As early as in the 1940s, DMAs of different
orders were constructed and their anti-noise characteristics were
analyzed [9,10]. Since then, a good amount of progress has been
made. In [11,12], adaptive DMAs were developed to suppress spa-
tially non-stationary noise. In [13], an approach based on sensor
calibration was designed to increase DMAS’ robustness against
sensor mismatch, which may seriously damage their performance.
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In [14], DMAs were used to estimate the noise power spectral den-
sity (PSD), and the spectral subtraction algorithm was then applied
to suppress noise. In [15,16], approaches for the design of higher-
order DMAs were developed. In [6,7], DMAs were systematically
studied from a signal processing perspective. Specifically, the
design, implementation, and performance analysis of DMAs were
presented.

In [6,8], the exponential function, which appears in the general
definition of the beampattern, was approximated with the
MacLaurin’s series; this lead to the design of DMAs of different
orders. It has been reported that DMAs based on the MacLaurin’s
series are capable of achieving high directivity factors. However,
it has been observed that when the intersensor spacing is not very
small, the MacLaurin’s series is no longer a good approximation of
the exponential function. As a result, the performance of DMAs is
affected. To avoid this problem, we propose in this paper to use
the Jacobi-Anger expansion to approximate the exponential func-
tion. We first derive the traditional’ first-, second-, and third-order
DMAs. Many simulation results show that the traditional DMAs with
the Jacobi-Anger expansion significantly improve the directivity

1 By traditional, we mean that the order of the DMA is equal to M — 1, where M > 2
is the number of microphones.
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factor, but have the problem of white noise amplification, like any
other approaches. To deal with this serious side effect, we derive
robust DMAs by using more microphones combined with minimum-
norm filters. It is shown that the robust DMAs with the Jacobi-Anger
expansion improve the white noise gain considerably and, therefore,
are more robust against any imperfections in the system. In compar-
ison with DMAs based on the MacLaurin’s series, DMAs based on
the Jacobi-Anger expansion perform better by giving higher directiv-
ity factors and white noise gains, confirming that the latter approxi-
mation is preferable in the derivation of DMAs. It is also shown that
the Jacobi-Anger expansion is optimal from an MSE perspective.

The rest of this paper is organized as follows. In Section 2, some
basic concepts of DMAs are introduced. In Section 3, frequency-
independent patterns and the approximation based on the
Jacobi-Anger expansion are presented. The traditional and robust
first-, second-, and third-order DMAs are derived in Sections 4-6,
respectively. Simulations are carried out to evaluate the perfor-
mance of DMAs in Section 7, followed by our conclusions in
Section 8.

2. Signal model, problem formulation, and definitions

We consider a source signal (plane wave), in the farfield, that
propagates in an anechoic acoustic environment at the speed of
sound, i.e., c = 340 m/s, and impinges on a uniform linear sensor
array consisting of M omnidirectional microphones, where the dis-
tance between two successive sensors is equal to ¢ (see Fig. 1). The
direction of the source signal to the array is parameterized by the
azimuth angle 6. In this scenario, the steering vector (of length M)
is given by

d((})7 0) — [1 w0 Cos 0 e I(M-1)wtg cos 0 ]T, (])
where the superscript T is the transpose operator, ;= v/—1 is the
imaginary unit, @ = 27f is the angular frequency, f > 0 is the tem-
poral frequency, and 7o = 6/c is the delay between two successive
sensors at the angle 0 = 0. The acoustic wavelength is 1 = c/f.

In order to avoid spatial aliasing [3], which has the negative
effect of creating grating lobes (i.e., copies of the main lobe, which
usually points toward the desired signal), it is necessary that the

inter-element spacing is less than 1/2, i.e.,
Wty < T. (2)

The condition (2) easily holds for small values of § and at low fre-
quencies but not at high frequencies.

We consider fixed beamformers, such as DMAs [6,7,13,15,16],
where the main lobe is at the angle 0 = 0 (endfire direction) and
the desired signal propagates from the same angle. Our focus is
on the design of different orders DMAs that are robust to white
noise amplification. For that, a complex weight, H; (w),m =
1,2,...,M, is applied at the output of each microphone, where
the superscript * denotes complex conjugation. The weighted out-
puts are then summed together to form the beamformer output as
shown in Fig. 1. Putting all the gains together in a vector of length
M, we get

h(w) = [Hi(w) Ha(w) Hu(w)]". (3)

Then, the objective is to design such a filter so that the array obeys a
given DMA pattern.

The vector containing the microphone signals can be expressed
as
Y(@)=[Y1(®) Ys(@) - Yu(®)]" =d(@,0)X(®)+V(w), (4)
where d(w,0) is the steering vector at 0 =0 (direction of the
source), X(w) is the desired signal, and

Fig. 1. A uniform linear microphone array with processing.

V(o) = [Vi(w) Vi(o) V()] (5)

is the additive noise signal vector.
The beamformer output is simply [4]

Z(w) = h"(w)y(w) = K (w)d(w,0)X(w) + h (w)v(w), (6)

where Z(w) is the estimate of the desired signal, X(w), and the
superscript ' is the conjugate-transpose operator.

If we take microphone 1 as the reference, we can define the
input signal-to-noise ratio (SNR) with respect to this reference as

iSNR(w) = % 7)

where ¢y () :E“X(w)f] and ¢y, (w) = E[\v1 (w)|2] are the vari-
ances of X(w) and V; (), respectively, with E[-] denoting mathemat-
ical expectation.

The output SNR is obtained from the variance of Z(w):
2

)h”(w)d(w, 0)‘
0SNR[h(w)] = ¢x(w)

h" () @y (0)h(0)
2
~ ¢x(o) % ‘hH(a))d(w’O)‘ (8)
¢y, (@) " W)y (w)h(w)
where @, (@) = E[v(w)v"(w)] and I'y(w) = ;"((‘(‘j}) are the correlation

and pseudo-coherence matrices of v(w), respectively.
The definition of the gain in SNR is easily derived from the
previous definitions, i.e.,
H 2
Gl — SNRI@) \h (@)d(o, 0))
iISNR(@) W ()ry(0)h(w)

9)
We are interested in two types of noise.

e The temporally and spatially white noise with the same
variance at all microphones.? In this case, I'v(w) = Iy, where Iy
is the M x M identity matrix. Therefore, the white noise gain
(WNGQG) is
u 2

h’(w)d(w,0)
h'(w)h(e)

The delay-and-sum (DS) beamformer:

Gun[h(@)] = (10)

2 This noise models the sensor noise.
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