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a b s t r a c t

A new method for identification of fish vocalizations based on auditory analysis and support vector
machine (SVM) classification is presented. In this method, high resolution features have been extracted
from fish vocalization data using the amplitude modulation spectrogram (AMS) of the input signals to
facilitate the identification of grunts and growls made by a highly vocal wild fish, Porichthys notatus.
The comparison results made from ocean audio recordings verify the effectiveness of the proposed
method in identifying various types of fish vocalizations. The relationships between signal-to-noise ratio
(SNR) and ocean temperature with the accuracy of the proposed method have also been quantified.
Moreover, a context-aware prediction algorithm is introduced for estimating the continuous data.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic communication is an important component of intra
and inter-specific interactions among many species of fish [1]. Fish
produce sound in agonistic situations [2–4], courtship and repro-
duction events [5–8], and unintentionally during other behaviours
[9]. These sounds can range from barely audible to the human ear
[10] to loud enough to disturb the sleep of nearby residents [11].
To date, over 800 species are known to make sound and many
more are believed to do so [12,13].

Passive acoustics allows a non-destructive way to gain insights
on spawning locations, fish abundance, and temporal aspects
[12,14]. However, it also relies on the basic recognition of fish
sounds, the majority of which to date, have not yet been identified
[12]. What’s more, once sounds have been identified, sifting
through extensive audio datasets can manually become a long
and tedious process [15,16]. Manual detections can be too time
consuming and error-prone (e.g., due to bias or observer fatigue)
to yield accurate results over long datasets [17]. Applying machine
learning and automated approaches to long acoustic datasets
therefore would further this field markedly.

Here we focus on the plainfin midshipman (Porichthys notatus),
a highly vocal species of toadfish found along the northeast Pacific
[18]. This fish makes four distinct vocalizations: the hum,
growl, grunt, and grunt train [5]. Grunts and growls are used in

antagonistic encounters with conspecifies, while the hum is pro-
duced during reproductive months by alpha males trying to attract
females to mate [5,19]. Compared with other species, these fish are
fairly well understood, and their call characteristics, well docu-
mented [20]. However, an automated approach to quantify and
identify their sounds in natural habitats and over long time frames
has never been created. Such a tool could offer ecological insights
on P. notatus populations including abundance, habitat location
and range, migratory patterns and call diversity in situ.

Traditionally, the identification of animal vocalizations has been
done by manually analyzing large recorded datasets [16]. But
machine-based algorithms offer a more efficient and potentially
effective way to filter through long term acoustic data sets
[21–23]. For example, in [15], an identification scheme has been
presented for different Orthoptera species by using temporal
information such as duration between zero-crossings, shape of the
waveform and artificial neural network based multilayer percep-
tron classifier. Similarly, a complicated method for identification
of humpback whales has been introduced in [24] by detecting
frequency contour and optimizing multiple parameters. Other
identification approaches have been proposed based on frequency-
domain information, such as the spectrogram correlation based
template matching scheme [16], Kalman filter based contour-
tracking scheme [25], contour features based scheme [26], and
contour signature based scheme [27]. However, in our study, as
the characterizing features of P. notatus’ grunt and growl signals
both fall in the lower frequency range (�100 Hz), and both sounds
are of very short duration, a higher resolution temporal–spectral
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signal representation is therefore desired for accurate identifica-
tion. In many species of toadfish including P. notatus, call frequency
is correlated with water temperature [28–31]. Therefore, knowing
water temperature can help to predict dominant call frequencies
and can thus become a useful parameter in automatic auditory
identification schemes.

In this paper, we propose a fish sound identification scheme
based on auditory analysis using amplitude modulation spectro-
gram (AMS). The information containing amplitude modulations
of the input signal is analyzed and represented in two-
dimensional AMS. The extraction of high-resolution features is
performedwhich ismotivatedby the results fromaneurophysiolog-
ical experiment on periodicity coding in the auditory cortex [32]. A
support vector machine (SVM) classifier is then trained on a large
number of pre-selected AMS patterns, and classifies the input sig-
nals into grunt and growl classes. It is worth mentioning that the
high-resolution features extract the subtle and detailed information
and contain more distinctive information than low-resolution
features.

2. Method

The proposed identification scheme for fish vocalizations is
based on auditory analysis for feature extraction followed by a
machine learning algorithm for classification. The overall flowchart
of our method is shown in Fig. 1. The hydrophone recordings of fish
data are partitioned first into blocks of particular segments. Each
1D data block is then converted into a 2D feature map. A high-
resolution feature set (descriptors) is then constructed from the
feature maps and used as input to the SVM classifier.

2.1. Data preprocessing

For each of the five days that were analyzed here, five minutes
of each hour of a 24-h cycle were processed manually by identify-
ing grunts and growls, thus forming 24 five-minute clips per day.
Each five minute spectrogram was then examined manually (visu-
ally and audibly) using Audacity 2.0.6 [33] by an expert, who
recorded all start and end time stamps (in seconds) for each vocal-
ization. Based on the time stamps of the annotated data, all grunt
and growl segments were then extracted, resampled (from
44,100 Hz to 16,000 Hz) and resized into N-sample data blocks
(N = 8192 here, referring to � 0:5 s) followed by time windowing
using N-sample Hamming windows [34]. It should be noted that
resampling is usually done to reduce the computational complex-
ity of the method, by running it on a signal sampled at a lower rate.
Resizing, meanwhile, is done to save memory by compressing the
signal without changing its spectral content [35].

2.2. Feature extraction

We have proposed a high-resolution descriptor (i.e., feature set)
for the identification of fish species from their vocalizations. Each
input fish data block is first bandpass filtered into 25 subbands
by a mel-frequency bank [36]. The envelope of each subband is
then obtained by using full-wave rectification followed by decima-
tion with a factor of 3. The decimated envelope signals are subse-
quently partitioned into segments of 128 samples (0.572 ms) using
50% overlapping, Hamming window. The 256-point fast Fourier
transform (FFT) of the zero-padded segments is then calculated.
The FFT computes the modulation spectrum in each subband with
a frequency resolution of 15.6 Hz. For each subband, the FFT mag-
nitudes are multiplied by 15 uniformly spaced triangular-shaped
windows across the 15.6–400 Hz range and summed up to gener-
ate 15 modulation spectrum amplitudes representing AMS feature

matrix Slðn;mÞ, where n; m and l indicate the time index, modula-
tion index, and subband/channel index, respectively, with
1 6 fn;m; lg 6 fN;M; Lg. Then, as shown in Fig. 2, the proposed
high-resolution descriptor, d of size ð1�MLÞ is constructed as
follows:

d ¼ ½K1ðmÞ;K2ðmÞ; . . . ;KLðmÞ�; ð1Þ
where

KlðmÞ ¼ 1
N

XN
n¼1

Slðn;mÞ ð2Þ

Here, we set M = 25 and L = 15.
Illustrative plots of our high-resolution descriptors for grunt

and growl vocalizations are shown in Fig. 3.

2.3. Feature selection

Feature selection is adopted here to improve classification by
removing redundant information in high-dimensionality spaces.
The sequential floating forward selection (SFFS) algorithm
[37,38], finds an optimum subset of features by appending features
to and discarding features from subsets of selected features and
has been adopted to guide the search, as the SFFS algorithm shows
below. A separation index based on distance and separability mea-
sures is considered in the SFFS algorithm as an objective function,
which evaluates the candidate set by returning a measure of their
‘goodness’. This SFFS scheme automatically selects the best feature
subset of high-resolution features related to fish vocalizations. The
size of the feature space is 375, which corresponds to the length of
the high-resolution features.

The SFFS algorithm adopted for feature selection:

1. Start with initialization:
i 0;
D0  {;};
Jð0Þ  0

2. Inclusion – select the most significant feature with respect to
Dk:
d0 ¼ arg maxdRDk

JðDk þ dÞ;
Dkþ1 ¼ Dk þ d0; k ¼ kþ 1

Fig. 1. The overall flowchart of the proposed scheme.
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