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Abstract: In model predictive control, knowledge about the future trajectories of the set points
or disturbances is used to optimize the overall system performance, Camacho and Bordons
(2007). For hybrid electric vehicles, by predicting the future Driver’s Desired Velocity (DDV),
fuel economy, or emissions can be improved, Debert et al. (2010). For predicting DDV, different
approaches have been suggested, for example, artificial neural networks, Fotouhi et al. (2011),
statistical methods, or methods based on GPS and Geographical Information Systems(GIS),
Keulen et al. (2009). In this work, some of these approaches are introduced and autoregressive
methods with GPS/GIS information are evaluated.
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1. INTRODUCTION

The idea of forecasting the future behavior of statistical
time series has a wide range of applications in economics,
sociology, climate analysis, communications, control sys-
tems, etc. In control systems, time series forecasting is
specifically applicable for improving the performance of
instantaneous optimal controllers that try to minimize
a cost function by modifying the controllable inputs of
the plant. The idea is that instead of optimizing the cost
function at each moment (instantaneous optimal control),
the optimization be done over a time horizon (Model
Predictive Control, MPC). So, the cost function trajectory
is closer to the globally optimal trajectory. To achieve this
goal, it is necessary to predict the future trajectories of all
of the reference signals r(t) of the system. When the plant
is a vehicle, DDV is the only reference signal that needs
to be predicted.

DDV time series by nature is a non-stationary random
process and most of the methods for modeling and fore-
casting non-stationary time series are applicable for DDV
prediction. But, the DDV trajectory is highly affected by
some predictable environmental factors like traffic signs,
road condition, etc. The possibility of predicting some of
the factors (events) that can affect DDV, is one of the
advantages of forecasting DDV over other time-series fore-
casts. For DDV prediction, different approaches have been
suggested: off-line modeling on recorded data, artificial
neural networks, models based on GPS/GIS information,
and statistical methods.

This work introduces some of the approaches that are
suggested for predicting DDV in section 2. Then in section
3, the benefit of using statistical methods with GPS/GIS
information over other approaches, is discussed. Finally,
in section 4, a combination of time series methods with «
priori knowledge of deterministic environmental factors is
presented for DDV forecasting.
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Fig. 1. Velocity data set on a constant path
Johannesson et al. (2005)

2. OVERVIEW OF SUGGESTED METHODS FOR
DDV PREDICTION

2.1 Off-line modeling using recorded data

Off-line modeling, discussed by Lin et al. (2004), Johan-
nesson et al. (2005), is applicable for repeated paths like
home to work drive cycles or the path of a bus. The path
is traveled several times to create a data set for the vehicle
speed v, acceleration a, position d, and the road gradient g,
along that path. Then a model is developed from the data
set and used for DDV prediction under real conditions on
that path. This idea can also be extended on a large scale
by creating a huge database for all streets in a city or even
a country.

For example in Johannesson et al. (2005) and Lin et al.
(2004), a Markov chain model is developed on the data
set (Fig. 1): First a set of discrete numbers (grids) is
defined for each recorded data: v = {vi,..,vp},a =
{a1,...,aq},d = {d1,....dr},s = {g1,...,9p}- Then each
recorded data point (v, a,d, g) is quantized on the defined
grid to achieve a set of states x = {v,a,d, g}. Now, since
the sequence of recording data is known, it is possible to
define a state probability transition among the set of states
pij = f[(Tr41]zk) where p; ; represents the probability of
trqansistion from state i at time k to state j at time k+ 1.
The same logic can be used for prediction times of more
than 1 second.

In Yokoi et al. (2004), instead of samples, features of
driving pattern are extracted and an unsupervised learning
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method (clustering) is used as a model to represent the
data.

An artificial neural network (ANN) is another approach for
mapping a nonlinear function onto a set of data. In Fotouhi
et al. (2011), multi-layer perceptron neural networks are
used for up to 10 seconds forecasting during city driving.
They trained 10 different multi-layer perceptron ANNs for
each second ahead.

2.2 Recurrent artificial neural networks

ANN can be described by a topology and a set of synaptic
weights {w;} and during the training phase, the weights
are updated to achieve the least error between the ANN
outputs y and desired outputs y. So, an ANN can can be
presented as a dynamic system:

wlk + 1] = f(wlk], e[k]) ,y[k] = g(w[k], ulk]) (1)

where w is the vector of inputs and e = y — ¥ is the error
vector. In the previous section, an ANN was introduced
as an approach for off-line modeling of the recorded data,
Fotouhi et al. (2011). However, when an ANN is trained
with a pre-recorded database, it may still fail under real
conditions due to the infinite possible realizations of the
DDV as a non-stationary stochastic process. This happens
because after the training phase, the set of w or the ANN
state remains constant. To resolve this issue, an adaptive
ANN can be used instead and Kalman filter equations
can be employed to train the network. The idea is to
assume the evolution of the ANN weights is a measurement
process:

{w[k-l-l] = w(k| + nq (k| (2)
y[k] = g(wlk], ulk]) + na[K]

where n; is the plant noise and and ns is the measurement
noise and both are white noises: E{n;[k]n;[k + m]} =
¥,;0[m]. Hence, at each moment when new data y is
measured, the ANN can be trained again. The process of
training the ANN can be treated as optimum estimation of
the system states w by minimizing the state/measurement
errors. As a result, the extended Kalman filter is a suitable
algorithm for real time training of the ANN. The above
method is used in Alanis et al. (2009) with a recurrent
high order ANN for wind speed prediction. However, at
this moment no work was found for DDV forecasting with
this method.

2.3 Models based on GPS/GIS information

The sequence of events like traffic signs, traffic flow,
road curve/grade, weather condition, etc., will affect the
speed limit on a route and consequently affect the DDV
trajectory as is shown in Fig. 2. With recent advances in
navigation systems, a priori knowledge of upcoming events
as a deterministic time series Sy can be acquired. This prior
information about S; can be used for estimating the DDV
time series.

Almost all of the approaches based on prior knowledge of
St, divide the upcoming road into segments with the same
speed limits. Then, the vehicle speed during that segment
is estimated with the initial condition that each segment
final speed is equal to the next segment initial speed or vice
versa. Different methods have been suggested to estimate
DDV on one segment. For instance in Keulen et al. (2009),
acceleration or deceleration phases are predicted based on
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Fig. 2. Speed limits affected by a sequence of events S

minimizing fuel consumption. In Mller et al. (2004), first
a critical acceleration a.,;; is calculated at the end of each
segment to reach the speed limit of the next segment.
Then, a.-;; has been used as the basis for predicting
driver’s desired acceleration under braking, deceleration
and acceleration situations.

2.4 Statistical Methods

Statistical time series forecasting may be divided into
time and frequency domain analysis, Ao (2010). In time
domain analysis, autoregressive (AR), moving average
(MA), autoregressive moving average (ARM A) are some
of the tools that can model stationary time series. For
non-stationary time series, models like autoregressive in-
tegrated moving average (ARIM A)are suggested.

The ARM A(p, ¢) model for a zero mean time series z; is:

p q
ARMA(p,q): =Y @i(wi—; — )+ Oiwi_itw; (3)
i=1 i=1

where p and ¢ are the orders of the AR and M A com-
ponents, respectively; ¢; and 6; are the AR and MA
parameters, respectively, and w; is zero mean white noise.
ARM A(p, 0) is equivalent to a simple autoregressive model
of order p: AR(p). Similarly, ARM A(0, q) is equivalent to
a simple moving average model of order ¢: M A(q).

The ARM A model produces a stationary time series. As
a result when modeling a non-stationary random process
with ARM A, first the time series has to be transformed
to a stationary time series. Different techniques like de-
trending, taking difference or nonlinear transformations
are introduced for this purpose. The ARIM A(p,d,q)
model is an extended version of ARM A(p, q) that applies
a difference operation d times to a non-stationary time
series to yield a stationary time series.

For estimating a time series with an ARIM A(p,d,q)
process, first the model parameters p,d,q have to be
identified. The basic method for model identification is
the evaluation of the sample auto-correlation function
(ACF) and partial auto-correlation function (PACF) of
the recorded data.

For prediction based on AR(p), if the joint probabil-
ity of the target parameter z;;;, and the observations
{x¢,21—1,2—N4+1} is unknown, then the best linear esti-
mation is achieved by applying the orthogonality principle
between the prediction error and the observed data (also
known as Yule-Walker estimator; See Box et al. (1994)).
The predictor is:
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