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Abstract: This paper introduces a model predictive control (MPC) strategy for the purpose
of fuel-optimal operation of a range-extender hybrid vehicle. The modern navigation system
nowadays can provide abundant road information. Using this information, the proposed
controller solves a global optimization problem offline in order to determine a preset trajectory
of the state of charge (SoC). The online MPC uses the resulting SoC trajectory as set-points
for the terminal state in every moving horizon. Repeating this process, the optimal energy
management along the trip to be traveled can thus be calculated. This proposed control strategy
is implemented in the commercial vehicle simulation environment IPG CarMaker. From the first
simulation results, the proposed strategy shows a promising fuel saving potential with real-time
capability.

Keywords: Hybrid vehicles, Optimal control, Predictive control, Pontryagin’s minimum
principle, State constrained control.

1. INTRODUCTION

Many approaches for energy management for hybrid elec-
tric vehicles (HEV) have been reported, including rule-
based strategies, global optimal control (GOC) strategies,
and online-capable model predictive control (MPC) strate-
gies. Although the rule-based strategies has shown great
real-time ability and practicality in implementation on
real vehicles, it is challenging to calibrate the controller
to achieve a fuel economy near an optimal controller, as
Tribioli et al. (2014) reported. Besides, it requires much
effort for tuning to ensure robustness in different test
scenarios (Serrao et al., 2011).

GOC and MPC are related to solving optimal control
problems (OCP). One may classify the solution techniques
of such problems into two main categories: dynamic pro-
gramming (DP) and calculus of variations. DP splits the
whole mission into a finite number of sub-problems in dis-
crete time intervals and studies every feasible state/control
sequence. The large number of thereby generated possible
solutions implies a great computational effort, which is one
of the biggest drawbacks for its real-time capability (Serrao
et al., 2011). The latter technique can be further divided
into direct and indirect search methods (Rao, 2010; Papa-
georgiou, 2006). The direct search method discretizes OCP
along the time axis and the relationship between states at
different time instances is imposed by the system dynamics
as a result of the control inputs. Thus, OCP is transformed

⋆ This work was done within the project Opti-E-Drive with the
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been supported by the Federal Ministry for Economic Affairs and
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into a static optimization problem comprising a sequence
of control inputs. This method seems sufficiently mature in
context of energy management. General Motors Company
has already published patents adopting it (Heap, 2008).
As for indirect search method, the Hamiltonian function
is introduced to reformulate OCP so that the necessary
conditions for optimality based on calculus of variation
can be applied (Papageorgiou, 2006, p. 192). In the case
of control inputs being constrained, the conditions are
provided by Pontryagin’s Minimum Principle (PMP). In
this way, OCP is cast into a two-point boundary value
problem. PMP has been proven very effective in solving
energy management problems in HEV (Serrao et al., 2011).
Ambühl et al. (2010) presented a detailed insight of PMP
implementation in HEV. Kim et al. (2011) and Stockar
et al. (2011) discussed how to include state constraints
elegantly by using an extended Hamiltonian formulation.
The former assumed a jump in the co-state at entering the
state boundary whereas the latter introduced an adjoined
Lagrange multiplier for solving OCP at state boundaries.
Although, to determine the valid values for either the co-
state after the jump or the adjoined multiplier requires a
number of trials.

Research on control strategies for externally-rechargeable
HEV is growing rapidly in recent years. These HEV classes
include Plug-in Hybrid vehicles (PHEV) and Range-
Extender Hybrid vehicles (BEVx). The most basic control
strategy for this class of HEV is charge-sustaining charge-
depleting (CDCS) strategy, where the engine is switched
on only if the batterie’s state of charge (SoC) falls below
the lower boundary. Researches have revealed that avoid-
ing the charge-sustaining phase by switching on the engine
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Fig. 1. BEVx powertrain topology

earlier can be beneficial for fuel economy (Larsson et al.,
2010). Many articles have discussed GOC strategies using
DP (Serrao et al., 2011; Gong et al., 2008) or PMP (Tribioli
et al., 2014; Hou et al., 2014) to plan the optimal SoC and
control policies over the whole trip. As Sun et al. (2014)
suggested, the SoC trajectory generated by GOC can then
be employed as the terminal state reference in each horizon
of MPC. He has demonstrated an experimental application
of this two-scale structure using DP algorithm.

This paper presents a two-scale PMP solution for exter-
nally rechargeable HEV, applying it on BEVx as an ex-
ample. With modifications, the proposed algorithm is also
applicable on other HEV configurations. Another novelty
may consist in handling constraints on the state regarding
PMP without numerous trials to determine required pa-
rameters. Through a driver model for speed prediction, the
necessary a priori knowledge of the road load for GOC can
be acquired, which is the required torque and rotational
speed at the wheels. In the offline phase, i.e. before the
BEVx starts off, the global optimization problem for best
fuel economy is solved based on the predicted road-load
information over the entire trip. Thus we obtain a set-
point trajectory over the traveled distance for SoC. In the
online phase, i.e. during the driving, our MPC algorithm
solves one time-finite optimization problem with terminal
state constraints at every discrete time instance.

2. SYSTEM MODEL AND OPTIMIZATION
PROBLEM

The following section introduces the powertrain topology
of BEVx discussed in this paper, the optimization control
problem formulation and the mathematical models that
appear in the problem formulation.

2.1 Powertrain Topology

The powertrain of BEVx is a so-called serial hybrid con-
figuration. The electric generator is mechanically coupled
with an engine and converts the mechanical power from
the engine into electrical power. The generator operates as
a motor only when it starts up the engine. The generated
electrical power joins the power flow from the battery to
supply the traction motor whose torque drives further the
wheels through the final drive. The powertrain topology
of BEVx is depicted in Fig. 1.

2.2 Optimal Control Problem Formulation

According to the classical optimization problem definition
(Papageorgiou, 2006), we can describe OPC discussed in

this paper as follows:

min
u(·)

J =

∫ tf

t0

Pf(u(t)) dt (1a)

subject to

ẋ = f(x, u, d, t) (1b)

x(t0) = x0 (1c)

x(tf) = xf (1d)

umin ≤ u ≤ umax (1e)

xmin ≤ x ≤ xmax, (1f)

where Pf is the equivalent fuel power as a function of the
control u, which is the electric power Papu delivered by the
auxiliary power unit (APU). APU is the combined set out
of the generator and the engine. x stands for SoC of the
battery. d denotes the disturbance to the dynamic system.
At the beginning of a trip t = t0, SoC starts at the initial
state x0. Note that the terminal state constraint (1d) at
t = tf does not exist in offline GOC. That is because SoC
is not required to be held at a certain level to ensure the
sustainability for hybrid functionality, as in the case of
HEV without Plug-in.

The only state variable in a HEV energy management
problem is the SoC of the battery (Sciarretta and Guzzella,
2007). Thus, the system function (1b) can be described as
(cf. Hou et al., 2014),

ẋ = c1

(
Voc(x)−

√
V 2
oc(x)− c2Pbat(t)

)
, (2a)

with the coefficients

c1 = − (2QbatRbat)
−1

, (2b)

c2 = 4Rbat, (2c)

where Qbat is the full electric charge and Rbat the internal
resistance of the battery. The open-circuit voltage Voc(x)
is a function of SoC. Fig. 1 shows that the electric power
flows from the battery and APU converge to the traction
motor. Neglecting the power loss on the inverter, we can
express the output power of the battery Pbat according to
Kirchhoff’s laws:

Pbat(t) = Pmot,e(t)− Papu(t) = d(t)− u(t), (3)

where the time-variant disturbance is defined as d(t) :=
Papu(t).

After substituting Pbat in (2a) with (3), we get

ẋ = f(x, u, d)

= c1

(
Voc(x)−

√
V 2
oc(x) + c2(u− d)

)
.

(4)

2.3 Battery Model

We adopt the modeling method in Chen and Rincon-Mora
(2006) to build up an equivalent circuit model for the Li-
ion battery in the BEVx. Note that since the transient
response in the circuit is much quicker than the dynamical
characteristic in reference to SoC, the capacitors in the
model can be neglected. The circuit can thus be simplified
into a combination of a controlled voltage source Voc(SoC)
in dependance of SoC and a single internal resistor. The
relationship between SoC and Voc is depicted in Fig. 2.

Typically, the battery’s open-circuit voltage is considered
constant when modeling HEV. Different than in the case
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