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Abstract: The design of an energy management strategy for a hybrid electric vehicle typically requires
an estimate of requested power from the driver. If the driving cycle is not known a priori, stochastic
method such as a Markov chain driver model (MCDM) must be employed. For tracked vehicles, steering
power, which is related to the vehicle angular velocity, is a significant component of the driver demand.
In this paper, a three-dimensional MCDM incorporating angular velocity for a tracked vehicle is
proposed. Based on the nearest-neighborhood method (NNM), an online transition probability matrix
(TPM) updating algorithm is implemented for the three-dimensional MCDM. Simulation results show
that the TPM is able to update online when the driving cycle is available. Moreover, the older and recent
observations can be weighted appropriately by adjusting a forgetting factor.
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1. INTRODUCTION

With the hybrid vehicles being introduced to the market in
recent years and having the potential to reduce the fuel
consumption and emissions, an energy management strategy
needs to be proposed to coordinate the operation of the
multiple energy sources on board (Choi et al. [2014], Emadi
et al. [2005]). Even though it is impossible to know exactly
the future driving conditions (speed, road slope etc.), the
global optimal approach solved by deterministic dynamic
programming (DDP) is widely used as a benchmark for other
strategies (Salmasi [2007], Malikopoulos [2014]), and to

improve performance by appropriate rule extraction (Lin et al.

[2003]). As an alternative, stochastic control avoids perfect
assumption about the future driving by modelling the driver’s
behaviour as a stochastic input to the energy management
controller. Due to the simplification of the mathematical
expression and the easy incorporation with the optimal
control, the Markov chain (Grimmet and Stirzaker [2004])
based driver model has been successfully utilized to lay the
foundation for the stochastic control approaches as opposed
to the deterministic ones.

A Markov process (or Markov chain) is a system that can be
in one of several states and can move from one state to
another state, including itself, each time step according to a
transition probability matrix (TPM). The Markov property
states that the future states are independent of the past states
given the present state (Grimmet and Stirzaker [2004]). The
verification of the Markov property can be found in some
previous papers (Shi et al. [2013]). Many researches focused
on the Markov chain based driver stochastic energy
management strategies. Stochastic Model Predictive Control
(SMPC) is promising to outperform the other real-time
energy managements by the underlying assumption that the

power requested from the driver is represented by a Markov
model (Cairano et al. [2014]). Because of the probability
distribution of the drivers’ power request, the cost function
can be minimized in an expected form. Considering the
vehicle velocity, a two-dimensional Markov chain described
the drivers’ behaviour more accurately. An infinite-horizon
optimization problem with the discounted future costs is
solved by using the Stochastic Dynamic Programming (SDP)
(Liu and Peng [2008]). A weakness of the SDP approach is
that the optimization criterion discounts the future costs and
assigns a penalty to the battery State of Charge (SOC) at
every instant (Tate et al. [2008]). To solve this problem, a
terminal state representation when the vehicles turn off is
added to the two-dimensional Markov chain mentioned
above. The terminal state turns to absorbing: every state
transitions into it in finite time. Once in the terminal state, no
costs are incurred and there is zero probability of
transitioning out of it. The existence of this terminal state
forms a Shortest-Path Stochastic Dynamic Programming (SP-
SDP) problem, guaranteeing the expected objective cost to be
finite with no discount, and only penalizing the SOC
deviation from a set point when the vehicle is turned off
(Tate et al. [2008]). A similar Markov chain containing the
terminal state is proposed in recent years (Opila et al. [2012]),
where the vehicle velocity and the acceleration constitute the
state space. The above Markov chain models are all
stationary, which means the model is invariant for the time
and position, hence a position-dependent Markov chain with
the states of the wvehicle velocity and acceleration is
established to assess the potential of SDP’s predictive control
ability in contrast to a homogeneous Markov chain with
vehicle velocity and power request as the states (Johannesson
et al. [2007]).
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Even though much attention has been paid to the Markov
chain model application to the stochastic energy management
strategy for HEVs, the research on the Markov chain driver
models (MCDMs) for tracked wvehicles is scarce.
Significantly differing from the wheeled vehicle, the power
consumption during steering is much higher than that during
heading straight for tracked vehicle (Wang et al. [1983]). A
stochastic driver model incorporating the heading and
steering motion is high in demand. Previous research on the
stochastic control for tracked vehicles neglects the steering
power so that the MCDM is still a two-state Markov chain in
consideration of the heading power and velocity (Zou et al.
[2012a]). Moreover, the driver behaviour is also affected by
the surrounding environment all the time, for instance due to
the variant traffic conditions, the road types, and the driver
emotional states and objectives. Therefore, the MCDM
should have the flexibility to real-time update to reflect the
changes of the driver behaviour. In other words, TPM can
update online by utilizing the new velocity data provided by
telematics systems on board (Cairano et al. [2014]), unlike
the offline estimation of the TPM on the basis of observed
sample data, such as standard driving cycles, or past driving
records (Liu and Peng [2008]).

This paper discusses a new MCDM for tracked vehicles and a
TPM online wupdating algorithm based on nearest-
neighbourhood method (NNM) with a forgetting factor
adjusting the weights between older and recent observations.
A comparison measurement of TPMs called the Kullback-
Leibler (KL) divergence (Rached et al. [2004]) is applied to
quantize the difference between the updated time-variable
TPMs.

The remainder of the paper is arranged as follows: Section 2
introduces the MCDM for tracked vehicles and formulates
the TPM online updating algorithm; moreover, the KL
divergence is expounded; the results are discussed in Section
3; Section 4 concludes this paper.

2. A NEW MCDM FOR TRACKED VEHICLES AND
ONLINE UPDATING ALGORITHM FOR NNM

2.1 MCDM for Tracked Vehicles

An essential task in constructing an MCDM is to express the
power demand in a form that is computationally simple, but
with adequate precision. The general force diagram of a
tracked vehicle is shown in Fig. 1.The demanded power to
propel the vehicle, Py, is calculated as the combination of
heading power and steering power (Wong [2001])

where the first product is the heading power and the second is
the steering power. F; is the inertial force, F, is the
acrodynamic drag, F, is the rolling resistance, v, is the
average speed of vehicle, M is the resisting yaw moment
from the ground assuming steady-state turning and w is the
rotational speed of the vehicle.

When the slippage of the tracks is not considered, the
vehicular average heading speed v,,. is calculated as Eq. (2)
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where v, and v, are the speeds of two tracks. The vehicular
rotational speed is calculated as Eq. (3)

L

-

S

Fig. 1. Force diagram of tracked vehicles
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where B is the tread of the vehicle.

The value of F; is evaluated by
F. =ma 4)

where m is curb weight and a is the acceleration. The value of
F, is calculated by

€A Ve )

“21.15

where 4 is the fronted area and C, is the aerodynamic
coefficient. The rolling resistance F, is computed by

F =mg-f ()

where f is the rolling resistance coefficient and g is the
acceleration of the gravity. The value of M is calculated by

1
M = ZutmgL (7

where L is the contacting length of tracks and the coefficient
of the lateral resistance u, is computed based on empirical
results (Wang et al. [1983])

u =u__/(0.925+0.15R/ B) ®)
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