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Abstract: The design of an energy management strategy for a hybrid electric vehicle typically requires 
an estimate of requested power from the driver. If the driving cycle is not known a priori, stochastic 
method such as a Markov chain driver model (MCDM) must be employed. For tracked vehicles, steering 
power, which is related to the vehicle angular velocity, is a significant component of the driver demand. 
In this paper, a three-dimensional MCDM incorporating angular velocity for a tracked vehicle is 
proposed. Based on the nearest-neighborhood method (NNM), an online transition probability matrix 
(TPM) updating algorithm is implemented for the three-dimensional MCDM. Simulation results show 
that the TPM is able to update online when the driving cycle is available. Moreover, the older and recent 
observations can be weighted appropriately by adjusting a forgetting factor.  
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1. INTRODUCTION 

With the hybrid vehicles being introduced to the market in 
recent years and having the potential to reduce the fuel 
consumption and emissions, an energy management strategy 
needs to be proposed to coordinate the operation of the 
multiple energy sources on board (Choi et al. [2014], Emadi 
et al. [2005]). Even though it is impossible to know exactly 
the future driving conditions (speed, road slope etc.), the 
global optimal approach solved by deterministic dynamic 
programming (DDP) is widely used as a benchmark for other 
strategies (Salmasi [2007], Malikopoulos [2014]), and to 
improve performance by appropriate rule extraction (Lin et al. 
[2003]). As an alternative, stochastic control avoids perfect 
assumption about the future driving by modelling the driver’s 
behaviour as a stochastic input to the energy management 
controller. Due to the simplification of the mathematical 
expression and the easy incorporation with the optimal 
control, the Markov chain (Grimmet and Stirzaker [2004]) 
based driver model has been successfully utilized to lay the 
foundation for the stochastic control approaches as opposed 
to the deterministic ones. 

A Markov process (or Markov chain) is a system that can be 
in one of several states and can move from one state to 
another state, including itself, each time step according to a 
transition probability matrix (TPM). The Markov property 
states that the future states are independent of the past states 
given the present state (Grimmet and Stirzaker [2004]). The 
verification of the Markov property can be found in some 
previous papers (Shi et al. [2013]). Many researches focused 
on the Markov chain based driver stochastic energy 
management strategies. Stochastic Model Predictive Control 
(SMPC) is promising to outperform the other real-time 
energy managements by the underlying assumption that the 

power requested from the driver is represented by a Markov 
model (Cairano et al. [2014]). Because of the probability 
distribution of the drivers’ power request, the cost function 
can be minimized in an expected form. Considering the 
vehicle velocity, a two-dimensional Markov chain described 
the drivers’ behaviour more accurately. An infinite-horizon 
optimization problem with the discounted future costs is 
solved by using the Stochastic Dynamic Programming (SDP) 
(Liu and Peng [2008]). A weakness of the SDP approach is 
that the optimization criterion discounts the future costs and 
assigns a penalty to the battery State of Charge (SOC) at 
every instant (Tate et al. [2008]). To solve this problem, a 
terminal state representation when the vehicles turn off is 
added to the two-dimensional Markov chain mentioned 
above. The terminal state turns to absorbing: every state 
transitions into it in finite time. Once in the terminal state, no 
costs are incurred and there is zero probability of 
transitioning out of it. The existence of this terminal state 
forms a Shortest-Path Stochastic Dynamic Programming (SP-
SDP) problem, guaranteeing the expected objective cost to be 
finite with no discount, and only penalizing the SOC 
deviation from a set point when the vehicle is turned off 
(Tate et al. [2008]). A similar Markov chain containing the 
terminal state is proposed in recent years (Opila et al. [2012]), 
where the vehicle velocity and the acceleration constitute the 
state space. The above Markov chain models are all 
stationary, which means the model is invariant for the time 
and position, hence a position-dependent Markov chain with 
the states of the vehicle velocity and acceleration is 
established to assess the potential of SDP’s predictive control 
ability in contrast to a homogeneous Markov chain with 
vehicle velocity and power request as the states (Johannesson 
et al. [2007]). 
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Even though much attention has been paid to the Markov 
chain model application to the stochastic energy management 
strategy for HEVs, the research on the Markov chain driver 
models (MCDMs) for tracked vehicles is scarce. 
Significantly differing from the wheeled vehicle, the power 
consumption during steering is much higher than that during 
heading straight for tracked vehicle (Wang et al. [1983]). A 
stochastic driver model incorporating the heading and 
steering motion is high in demand. Previous research on the 
stochastic control for tracked vehicles neglects the steering 
power so that the MCDM is still a two-state Markov chain in 
consideration of the heading power and velocity (Zou et al. 
[2012a]).  Moreover, the driver behaviour is also affected by 
the surrounding environment all the time, for instance due to 
the variant traffic conditions, the road types, and the driver 
emotional states and objectives. Therefore, the MCDM 
should have the flexibility to real-time update to reflect the 
changes of the driver behaviour. In other words, TPM can 
update online by utilizing the new velocity data provided by 
telematics systems on board (Cairano et al. [2014]), unlike 
the offline estimation of the TPM on the basis of observed 
sample data, such as standard driving cycles, or past driving 
records (Liu and Peng [2008]). 

This paper discusses a new MCDM for tracked vehicles and a 
TPM online updating algorithm based on nearest-
neighbourhood method (NNM) with a forgetting factor 
adjusting the weights between older and recent observations. 
A comparison measurement of TPMs called the Kullback-
Leibler (KL) divergence (Rached et al. [2004]) is applied to 
quantize the difference between the updated time-variable 
TPMs. 

The remainder of the paper is arranged as follows: Section 2 
introduces the MCDM for tracked vehicles and formulates 
the TPM online updating algorithm; moreover, the KL 
divergence is expounded; the results are discussed in Section 
3; Section 4 concludes this paper. 

2. A NEW MCDM FOR TRACKED VEHICLES AND 
ONLINE UPDATING ALGORITHM FOR NNM 

2.1  MCDM for Tracked Vehicles 

An essential task in constructing an MCDM is to express the 
power demand in a form that is computationally simple, but 
with adequate precision. The general force diagram of a 
tracked vehicle is shown in Fig. 1.The demanded power to 
propel the vehicle, Pdem, is calculated as the combination of 
heading power and steering power (Wong [2001]) 

( )dem i a r aveP F F F v M                     (1) 

where the first product is the heading power and the second is 
the steering power. Fi is the inertial force, Fa is the 
aerodynamic drag, Fr is the rolling resistance, vave is the 
average speed of vehicle, M is the resisting yaw moment 
from the ground assuming steady-state turning and ω is the 
rotational speed of the vehicle. 

When the slippage of the tracks is not considered, the 
vehicular average heading speed vave is calculated as Eq. (2) 

1 2

2ave
v vv 

                                  (2) 

where v1 and v2 are the speeds of two tracks. The vehicular 
rotational speed is calculated as Eq. (3) 

 

Fig. 1. Force diagram of tracked vehicles  
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where B is the tread of the vehicle.  

The value of Fi is evaluated by 

iF ma                                     (4) 

where m is curb weight and a is the acceleration. The value of 
Fa is calculated by 

2

21.15
d

a ave
C AF v                                 (5) 

where A is the fronted area and Cd is the aerodynamic 
coefficient. The rolling resistance Fr is computed by 

rF mg f                                    (6) 

where f is the rolling resistance coefficient and g is the 
acceleration of the gravity. The value of M is calculated by  

1
4 tM u mgL                                  (7) 

where L is the contacting length of tracks and the coefficient 
of the lateral resistance ut is computed based on empirical 
results (Wang et al. [1983]) 

max / (0.925 0.15 / )tu u R B                      (8) 
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