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a b s t r a c t

Measured values of acoustic absorption often vary between the laboratory and the field due to deficien-
cies in standard measurement methods. This paper introduces a new method of measuring acoustic
absorption in the field using a spherical microphone array. Plane-wave decomposition is used to separate
direct energy from reflected energy when the array is placed adjacent to the absorptive sample. Addi-
tional signal processing techniques including the Dolph–Chebyshev beampattern and Delay-and-Sum
processing are introduced and used to improve the method. The method is verified by simulation for nor-
mal and oblique incidence and by experiment for normal incidence.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic designers select materials according to their acoustic
absorption coefficient in order to achieve a desired reverberation
time in acoustically-sensitive rooms or to reduce the sound level
in noisy environments. This paper introduces a new method of
measuring acoustic absorption in the field using a spherical micro-
phone array. The standardized laboratory procedures for measur-
ing the absorption coefficient use either a reverberation chamber
[1] or an impedance tube [2,3]. Discrepancies arise when compar-
ing the results of these methods due to deviations from ideal diffu-
sivity in the reverberation chamber, diffraction at the sample edges
in the reverberation chamber, differences in mounting condition
that affect the sample frame vibration, and deviations from the
local-reaction assumption [4].

Likewise, such factors can cause the absorption coefficient in
situ, or on location, to differ from that measured in the laboratory:
actual sample size (the ‘‘area effect’’) [5], mounting condition [6],
and incident sound field [7]. A number of measurement procedures
have been developed to characterize absorption in situ instead of
under idealized laboratory conditions. The procedures can gener-
ally be divided into wave-field analysis methods and separation
methods. Wave-field analysis methods measure direct and
reflected components together and use a wave-propagation model
in front of the surface to extract the normal surface impedance or
directional reflection coefficient [8–10]. More recently a combined
particle velocity–pressure sensor has been used for measuring

absorption in situ [11]. Separation methods, by contrast, require
separating the following components, generally for a single
incidence angle:

(i) acoustic pressure from sound wave incident on the sample,
(ii) acoustic pressure from sound wave reflected from sample,

(iii) parasitic reflections that contribute neither to (i) nor (ii).

The reflection coefficient, which leads to the absorption coeffi-
cient, is calculated by dividing component (ii) by component (i).
A classic separation strategy is to use a time window to isolate
components (i) and (ii) [12]. Component (ii) can also be isolated
by subtracting component (i) after obtaining it separately in an
equivalent free field measurement [13], although the subtraction
method is very sensitive to environmental conditions [14]. Array
processing has been applied previously to an in situ separation-
method technique [15]. Components (i) and (ii) were separated
by beamforming with a linear array placed perpendicularly
between the source and the surface of interest. However, this array
method only permits measurements at normal incidence.

The spherical array method in this paper separates components
(i) and (ii) by arrival direction on the array, which is placed adja-
cent to the sample. Depending on the sample size, time windowing
may or may not be required to filter parasitic reflections from the
sample edges. This method may be well-suited for use in situ
because of the potential to simultaneously isolate multiple compo-
nents (i) and (ii) from (iii) using plane-wave decomposition. The
method described here was proposed in an earlier publication
[16] and is further developed and experimentally validated in this
paper.
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Section 2 reviews beamforming and other signal processing
techniques. Section 3 then describes the application of beamform-
ing to the measurement of acoustic absorption. Simulation studies
are presented in Section 4, followed by experimental validations in
Section 5. The paper closes with observations and suggestions for
future work in Section 6.

2. Signal processing techniques

2.1. Spherical Fourier transform

The spherical Fourier transform converts a spatial function
between spatial domain and spherical harmonics domain. Consider
a square-integrable function on a sphere, such as acoustic pressure
pðh;/Þ. The spherical Fourier transform is defined as [17]:

pnm ¼
Z 2p

/¼0

Z p

h¼0
pðh;/ÞYm�

n ðh;/Þ sin hdhd/ ð1Þ

If the coefficients pnm are known, the inverse spherical Fourier
transform reconstructs the function in spatial domain [17]:

pðh;/Þ ¼
X1
n¼0

Xn

m¼�n

pnmYm
n ðh;/Þ ð2Þ

where the spherical harmonics basis functions are defined as:
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where n is the spherical harmonics order, m is an index running
from �n to n; Pm

n is the associated Legendre function, and i ¼
ffiffiffiffiffiffiffi
�1
p

.
If the function is sampled spatially across a sphere, for example
with a spherical array, the integral in Eq. (1) is approximated by a
weighted sum at M discrete microphone locations ðhj;/jÞ. The cor-
rect choice of sampling locations and weights, wj, can make this
approximation exact if pnm is band limited [18]:

pnm ¼
XM

j¼1

wjpðhj;/jÞYm�

n ðhj;/jÞ ð4Þ

2.2. Spherical array beamforming

Plane-wave decomposition is the process of extracting the
plane-wave components that comprise a sound field. If the sound
field on the surface of the sphere is known, then plane-wave
decomposition yields the complex amplitude and arrival direction
of plane-wave components. The derivation below shows that
plane-wave decomposition is a special case of beamforming.

The pressure from a single unit-amplitude plane wave is given
by [19]:

pðk; r; h;/; hl;/lÞ ¼
X1
n¼0

Xn

m¼�n

bnðkrÞYm�

n ðhl;/lÞYm
n ðh;/Þ ð5Þ

where bnðkrÞ for an open sphere of radius r is given by [19]:

bnðkrÞ ¼ 4pinjnðkrÞ ð6Þ

Here, pðk; r; h;/; hl;/lÞ is the pressure at point ðh;/Þ on the sphere
due to a plane wave arriving from direction ðhl;/lÞ. Also, k ¼ x=c
is the wavenumber for angular frequency x and speed of sound c,
and jn is the spherical Bessel function of order n. Taking the spher-
ical Fourier transform in Eq. (1) of Eq. (5) yields:

pnmðk; rÞ ¼ bnðkrÞYm�

n ðhl;/lÞ ð7Þ

Eq. (7) can be generalized for an infinite number of plane waves by
integrating over all arrival directions ðhl;/lÞ. The amplitudes of the

incident plane waves, expressed as a density function, are given by
aðk; hl;/lÞ:

pnmðk; rÞ ¼
Z 2p

/l¼0

Z p

hl¼0
aðk; hl;/lÞbnðkrÞYm�

n ðhl;/lÞ sin hl dhl d/l

¼ anmðkÞbnðkrÞ ð8Þ

Rearranging Eq. (8) to solve for the amplitude–density coeffi-
cients yields:

anmðkÞ ¼
pnmðk; rÞ

bnðkrÞ ð9Þ

Applying the inverse spherical Fourier transform in Eq. (2) to
the expression in Eq. (9) converts the amplitude-density coeffi-
cients, anm, back to the spatial domain, aðk; hl;/lÞ, as a function only
of the pressure coefficients at the surface of the sphere, pnm, and bn.
Generalizing plane-wave decomposition to spherical array pro-
cessing leads to [18]:

yðkr; hl;/lÞ ¼
XN

n¼0

Xn

m¼�n
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where an extra term dn has been added to the right side of the
expression. This term is a place-holder for beampattern coefficients
used in processing techniques such as the Dolph–Chebyshev
beampattern and Delay-and-Sum. When dn ¼ 1 and N !1, then
yðk; hl;/lÞ ¼ aðk; hl;/lÞ, and the expression yields plane-wave decom-
position, which is a special case of beamforming. In Eq. (10), the sum
over n is only taken up to order N, the maximum order that can be
achieved according to the spatial sampling scheme and number of
microphone locations around the sphere. At each frequency of inter-
est, the plane-wave decomposition is performed in two stages. First
the pressure coefficients pnm are determined up to order N using Eq.
(4). Next, the plane-wave decomposition is computed by Eq. (10) to
find the plane-wave amplitude in the desired direction.

2.3. Dolph–Chebyshev beampattern

If one wave is incident from the array look direction ðhl;/lÞ, a
second wave incident from another direction may still affect the
array output yðk; hl;/lÞ. The array output y has contributions from
both the former wave and the latter wave. The effect of the second-
ary wave depends on the beampattern side-lobe level. To reduce
the interference from secondary waves, a Dolph–Chebyshev beam-
pattern is introduced. Dolph–Chebyshev beampatterns ensure an
optimal minimum main-lobe width for a user-specified side-lobe
level. A simulation is conducted and reported in Section 4.2 to
determine an appropriate level of side-lobe attenuation. Below is
a summary of how to apply Dolph–Chebyshev beampatterns to
spherical arrays [20].

For an array of order N, the user specifies the main-lobe to side-
lobe amplitude ratio, 1=S. The parameter x0 is calculated for deter-
mining the null-to-null beamwidth 2b0. L is the Chebyshev-poly-
nomial order, which is set to 2N. A relation among S; x0, and b0 is
given by

x0 ¼ cosh
1
L

cosh�1ðSÞ
� �

ð11Þ

b0 ¼ 2 cos�1 1
x0

cos
p
2L

� �� �
ð12Þ

The amplitude ratio 1=S is used to calculate the spherical-array
beampattern coefficients, dk, which are used in Eq. (10).

dk ¼
2p
S
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