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Abstract: In order to guarantee safe and proper use of Lithium-ion batteries during operation,
an accurate estimate of the (internal) battery temperature is of paramount importance.
Electrochemical impedance spectroscopy (EIS) can be used to estimate the (internal) battery
temperature and several EIS-based temperature estimation methods have been proposed in
the literature. In this paper, we argue that all existing EIS-based temperature estimation
methods implicitly distinguish two steps: experiment design and parameter estimation. The
former step consists of choosing the excitation frequency (or frequencies) and the latter step
consists of estimating the battery temperature based on the measured impedance resulting
from the chosen excitation(s). By distinguishing these steps and by performing Monte-Carlo
simulations, all existing estimation methods are compared in terms of accuracy (mean-square
error) of the temperature estimate. The results of the comparison show that, due to different
choices in the two steps, significant differences in accuracy of the temperature estimate exist.
More importantly, by jointly selecting the parameters of the experiment-design and parameter-
estimation step, a more accurate temperature estimate can be obtained. This novel more-
accurate method estimates the temperature with an rms bias of 0.4°C and an average standard
deviation of 0.7°C using a single impedance measurement for the battery under consideration.
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1. INTRODUCTION

Due to properties such as high energy density, Lithium-ion
(Li-ion) batteries are used in various applications such as
battery packs in (hybrid) electric vehicles. For safety and
control purposes, temperature estimation of Li-ion batter-
ies is of vital importance. For example, high battery tem-
peratures can induce thermal runaway, which may cause
fire or explosions, and accelerate ageing of the battery,
thus reducing its lifetime and performance. A relatively
new field of temperature estimation methods is based on
electrochemical impedance spectroscopy (EIS), where a
temperature relation is inferred from the electrochemical
battery impedance. Using EIS for temperature estimation
is often referred to as “sensorless temperature estimation”,
since no intrusive or surface-mounted temperature sensors
are needed. Another advantage is that the internal average
battery temperature is gauged. Therefore, there is no heat
transfer delay due to the thermal mass of the battery as
with measurements of the surface temperature.

A number of studies have presented temperature estima-
tion methods (Raijmakers et al., 2014; Schmidt et al., 2013;
Srinivasan, 2012; Richardson et al., 2014; Zhu et al., 2015;
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Howey et al., 2014). It can be argued that the presented
methods can be broken down into two components: how
to choose the excitation signal for the battery and how
to estimate the battery temperature based on the mea-
sured output resulting from the chosen excitation signal.
In Fig. 1, a general block diagram is shown that can be
used to describe existing temperature estimation methods.
Here, the frequency f defines the excitation signal and the
measured output Z is the battery impedance. Choosing
the excitation frequency f is referred to as experiment
design, whereas estimating the battery temperature based
on the measured impedance Z is referred to as parameter
estimation. The real battery temperature and estimated
battery temperature are denoted by T and T, respec-
tively, and v denotes measurement noise on the measured
impedance Z. Furthermore, a battery impedance model
is employed to establish a relation between the measured
battery impedance Z and the battery temperature 7. In
Fig. 1, this is captured by the modelled battery impedance
A , which is computed by using a battery impedance model
and the excitation frequency f.

In general, the modelled battery impedance Z is com-
pared to the measured battery impedance Z, using some
established temperature relation, in order to obtain a
temperature estimate T. This comparison is defined by
the parameter-estimation component by means of settings
given by m. For example, one existing estimation method
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Fig. 1. Top level block diagram of measurement system.

(Schmidt et al., 2013) relates the real part of the battery
impedance Z to the battery temperature T'. Therefore, the
parameter m induces the setting “real part of Z” on the
parameter-estimation block and the battery temperature
T is estimated by comparing the real part of the measured
battery impedance to the real part of the modelled battery
impedance at the excitation frequency f. The settings for
experiment design, p, should yield a certain frequency f
that causes the output Z to have the right information
for the parameter estimation to give accurate results. For
example, a sensitivity analysis in Schmidt et al. (2013)
reveals that a high variation of impedance Z with tem-
perature T can be found for low frequencies f. However,
also a high variation of the impedance Z with the State-
of-Charge (SoC) is found in this frequency region. The
combination of both sensitivity analyses can be seen as
choosing the experiment-design parameter p, which re-
sulted for Schmidt et al. (2013) in a compromise in the
excitation frequency f. Also, p can hold information as to
how many measurements are taken and averaged in order
to obtain a temperature estimate.

In this paper, we analyse the accuracy of impedance-based
temperature estimation and propose a method that yields
a more accurate temperature estimate, when compared to
the existing methods. To do so, we will carefully investi-
gate both experiment design and parameter estimation of
impedance-based temperature estimation by introducing
several parameters, and explain how existing methods can
be considered as having certain choices for these param-
eters. A Monte-Carlo approach will be taken to analyse
how different choices in experiment design and parameter
estimation will lead to a different accuracy of T. This
accuracy is defined as the mean-square estimation error
(MSE) of the temperature estimate 7', where the MSE
can be broken down into bias (i.e., systematic error) and
standard deviation (i.e., random error) of the temperature

estimate 7. This will allow for a thorough comparison of
the achieved estimation accuracy of the state-of-the-art
impedance-based temperature estimation methods. More-
over, the analysis allows for synthesising parameters p
and m that yield a more accurate temperature estimate
(in terms of a smaller MSE value). As a basis for the
comparison, analysis and synthesis, a data-based approach
is chosen. No prior knowledge about batteries or battery
modelling is assumed and therefore this paper focuses on
the estimation problem instead of battery modelling and
related issues. This makes the framework widely applicable
for data-based battery analysis.

The organisation of the paper is as follows. Some back-
ground on EIS is presented in Section 2, and the principle

of temperature estimation and the proposed framework
are introduced in Section 3. Subsequently, the results of
this study are presented and discussed in Section 4 and
the conclusions are drawn in Section 5.

2. BATTERY IMPEDANCE MODELLING

The battery impedance Z can be interpreted as the battery
frequency response, where the battery takes a sinusoidal
voltage or current input with frequency f = w/(27), and
produces a sinusoidal current or voltage output, respec-
tively, with the same frequency. The ratio between input
and output can be described as a (complex) impedance
Z(jw) = Y42, 1)
where the magnitude of the excitation signal should be
sufficiently small in order to guarantee local linearity of the
system, yet not too small to prevent a poor signal-to-noise
ratio (SNR). The technique of obtaining the frequency
response of the battery is known as EIS and is widely used
for gathering information about a non-linear system such
as a battery (Orazem and Tribollet, 2008). In this study,
EIS measurements are conducted in galvanostatic mode
by superimposing a sinusoidal current with an amplitude
of 100v/2 mA on the load current of the battery (whether
or not a load current is present).

Based on the focus of the paper, as discussed in the Intro-
duction, modelling efforts are limited to defining a data-
based model instead of using modelling approaches such
as first-principles modelling or equivalent-circuit modelling
(Bergveld et al., 2002; Buller et al., 2003). In particular,
we model the battery by a function g : R* — C, that
depends on excitation frequency f, temperature 7', State-
of-Charge (SoC) and other effects w such as cycling history
and (dis)charge current. If also additive measurement noise
v € C, induced by the measurement device, is considered,
the battery impedance is given by

Z:g(f,T,SOC,W)+U, (2)
where v = a + jb with [a,b] a joint zero-mean Gaussian
distribution. In this paper, we do not take into account the
dependencies denoted by w and we shall assume w = 0
from now on. Introducing other dependencies than f, T
and SoC can be seen as an extension on this work without
changing the approach presented in this paper.

Based on the relation in (2) and EIS measurements, a
battery model can be made, e.g., by storing impedance
data in look-up tables. Since the measurement noise v
and the SoC are assumed to be unknown, for simplicity, a
model g of the battery impedance Z is constructed by
averaging over SoC and v in order to make the model
independent of these influences. As a result of these
assumptions, the model is given by

| MK

§(£.7) = 737 ;;g(f,T,Son,O) tu o (3)
for some SoC; € [0,100] and j € {1,...,M}, where
M € N is the number of SoC values at which the battery
impedance is measured and K € N is the number of
measurements taken per SoC. It should be noted that the
averaged model (3) is not necessarily equivalent to a model
based on SoC = 50%, since the behaviour of the battery
impedance might be asymmetric with respect to SoC.
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