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a b s t r a c t

This paper considers the disorder in a periodic duct–resonator system. The transfer matrix method is
used to investigate wave propagation in the duct. Two cases are investigated: the disorder in periodic
distance and the disorder in the geometries of Helmholtz resonators. Different from the original attenu-
ation characteristic brought about by pure periodic system, it is found that the disorder in the geometries
of resonators with the periodic distance being kept unchanged provides a useful way for the design of
such a system to achieve a relatively wide noise attenuation band and to track some narrow noise peaks
within it.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A periodic system is composed of a number of identical
elements that are joined together end to end and/or side by side
to form a whole complex [1]. Owing to the periodicity, the wave
propagation in a periodic system exhibits pass-band and stop-band
behavior [2]. A periodic system is sometimes imperfect; it may
contain defects or perturbations. A single disorder of an infinite
periodic system, which can be regarded as two semi-infinite peri-
odic systems connecting through the disordered element, was
studied [3]. It was found that defects in the perfect periodicity
may lead to narrow frequency transmission bands (i.e. defect
states) within the original stop-band gaps [4].

Sometimes the defect means the adiabatic variations of the
geometries of some ‘‘periodic’’ elements in the whole system.
The perturbations in the geometries of the ‘‘periodic’’ element
are random and have some statistical properties. Wave propaga-
tion through a medium with random impurity modulation will
cause the phenomenon of Anderson localization [5], which was
originally discovered in the field of solid state physics and then
introduced to the acoustic context [6]. When the random irregular-
ity of the geometries of the ‘‘periodic’’ elements is small compared
to its mean value, as a perturbation, this kind of system is some-
times called a near-periodic system [7]. The study of vibration
localization due to random disorder in near-periodic structures
has been the subject of much recent research [8].

Sometimes the defect means the non-adiabatic variations of the
geometries of the ‘‘periodic’’ element, which means that substan-
tial geometric variations occur from one cell to another [2]. The
non-adiabatic local perturbation of the geometries affects the
global characteristics of the whole system, which is then called a
quasi-periodic structure [9]. The quasi-periodic system can be
described by the ‘‘quasi-Bloch’’ theory [10]. It has been found that
the spectrum of a quasi-periodic structure is a discrete dense set
with discontinuous spectral intensities which clearly lie between
a periodic and a near-periodic system [10].

This paper considers the imperfect periodic duct–resonator
system. The defects contain both the disorder in periodic distance
and the disorder in the geometries of Helmholtz resonators. Some-
times the variation of periodic elements is adiabatic, which can be
regarded as a near-periodic system. However, sometimes the
imperfection in periodicity is man-made and the number of peri-
odic elements is relatively small, which means that the system
cannot be adequately described in a statistical way; this paper will
look further into this case.

2. Theoretical analysis

As shown in Fig. 1, a ‘‘periodic’’ cell comprises a duct segment
with a resonator attached to its left side. In this paper, only the
lossless case is considered. When considering the irregularity of
the periodic distance between any two nearby resonators and the
geometries of Helmholtz resonators, the system can no longer be
represented by a single transmission matrix T and a single periodic
distance D as it is in the pure-periodic case [11,12]. Rather, we
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should specify each transmission matrix and ‘‘periodic’’ distance,
noted as Tn and Dn for n = 1, 2,. . ., N. Similar to the pure-periodic
case, the diameter of the resonator neck is assumed to be negligible
compared to the length of the duct segment between two nearby
resonators, Dn. The frequency range considered is well below the
cut-on frequency of the duct. In the duct segment of the nth cell,
the sound traveling in positive- and negative-x directions can be
described with sound pressure Pþn ¼ Cþn e�jkðxn�DnÞ and P�n
¼ C�n ejkðxn�DnÞ for 0 � xn � Dn, where Cþn and C�n are complex con-
stants and k is the wave number. If cn ¼ Cþn C�n

� �T
and cnþ1

¼ Cþnþ1 C�nþ1

� �T represent the wave components in the duct seg-
ment of the nth and n + 1th elements of the ‘‘periodic’’ system, then
it can be related through a wave transfer matrix Tn+1 as follows:

cnþ1 ¼ Tnþ1cn: ð1Þ

As discussed before [11,12], the transfer matrix can be ex-
pressed as

Tn ¼
e�jkDn 0

0 ejkDn

" #
1� nn �nn

nn 1þ nn

� �
; ð2Þ

where nn = Zd/2Zn, Zd/Zn is the acoustic impedance of the duct/nth
resonator respectively. Furthermore, the transfer matrix Tn can be
rewritten in terms of the transmission and reflection coefficients,
tn and rn, as [13]

Tn ¼
e�jkDn 0

0 ejkDn

" #
1=t�n �ðrn=tnÞ�

�rn=tn 1=tn

� �
; ð3Þ

where the superscript � means conjugation. It follows that

cnþ1cT�
nþ1 ¼ Tnþ1ðcncT�

n ÞT
T�
nþ1; ð4Þ

where the superscript T means transposition; Eq. (4) can be rewrit-
ten in vector form as

enþ1 ¼ Anþ1en; ð5Þ

where the entries of the vectors en+1 and en can be expressed in
terms of the entries of cn+1 and cn, and the entries of the 4 � 4
matrix An+1 can be expressed in terms of the entries of Tn+1 [13], as

en ¼ Cþn Cþ�n Cþn C��n C�n Cþ�n C�n C��n

� �T
; ð6Þ

and

Anþ1¼

1=jtnþ1j2 �rnþ1=jtnþ1j2 �r�nþ1=jtnþ1j2 jrnþ1j2=jtnþ1j2

�r�nþ1dnþ1=t�2nþ1 dnþ1=t�2nþ1 r�2nþ1dnþ1=t�2nþ1 �r�nþ1dnþ1=t�2nþ1

�rnþ1=dnþ1t2
nþ1 r2

nþ1=dnþ1t2
nþ1 1=dnþ1t2

nþ1 �rnþ1=dnþ1t2
nþ1

jrnþ1j2=jtnþ1j2 �rnþ1=jtnþ1j2 �r�nþ1=jtnþ1j2 1=jtnþ1j2

2
66664

3
77775;

ð7Þ

where dn+1 = exp (�2jkDn+1). It should be noted that the final diago-
nal entry of the matrix An+1 has the value An+1(4, 4) = 1/|tn+1|2 [9],
and thus knowledge of An+1 leads immediately to the modulus

squared transmission coefficient between the nth and n + 1th
‘‘periodic’’ elements. Furthermore, for the whole system, there is

eN ¼
YN

n¼1

ANþ1�n

 !
e0 ¼ Ke0; ð8Þ

where An is the matrix derived from Tn and K is the corresponding
matrix of the whole system.

2.1. Random disorder

If the periodic system subject to random disorder and the
random variations in the properties of each ‘‘periodic’’ element
are statistically independent, then Eq. (8) can be described by the
ensemble average behavior of the system as [9]

E½K� ¼
YN
n¼1

E½ANþ1�n�: ð9Þ

Here, E[ ] represents the ensemble average. If the various ‘‘peri-
odic’’ elements have the same probability distribution, then Eq. (9)
can be reduced to

E½K� ¼ E½A�N : ð10Þ

If the duct–resonator system is initially periodic, with periodic
distance D and the transmission and reflection coefficients of a
side-branched Helmholtz resonator t and r, the matrices An+1 are
all the same with the omission of the subscript n + 1 in Eq. (7). If
the Helmholtz resonators are identical while the periodic distance
D can be described by a Gaussian distribution with the probability
density function p(D), the parameters d in Eq. (7) can be expressed
as

d ¼
Z 1

�1
e�2jkDpðDÞdD ¼ e�2jkD0�4r2k2=2: ð11Þ

where D0 is the mean ‘‘periodic’’ distance and r is the standard
deviation.

Eq. (10) can also be expressed in the form

E½K� ¼ PCNP�1; ð12Þ

where C is a diagonal matrix containing the eigenvalues of E[A] and
P is a matrix whose columns are the corresponding eigenvectors. If
N is allowed to tend to infinity and E[K] has at least one real eigen-
value greater than unity, there is

lim
N!1

E 1=jtNj2
h in o

¼ N ln kmax; ð13Þ

where tN is the transmission loss of the whole ‘‘periodic’’ duct–
resonator system.

2.2. Man-made disorder

However, sometimes the disorder is not an imperfection but a
man-made disorder to achieve a modified filter characteristic of

Fig. 1. A duct with N Helmholtz resonators.
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