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a b s t r a c t

A Helmholtz resonator is placed in a room with distinct acoustic modes, and is tuned to one of the cor-
responding resonant frequencies. The optimal resonator damping ratio is investigated, as a goal-depen-
dent value. For example, minimizing reverberation time requires a different damping ratio from
minimizing the sound pressure level. The optimum damping values for a Helmholtz resonator are analyt-
ically computed, and then verified by means of experimentation. Furthermore, a construction is intro-
duced which allows for a fine adjustable setting for the eigenfrequency and the damping ratio of the
resonator.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Resonant acoustic modes prevent small and medium-sized
rooms from having a smooth frequency response, and also cause
long reverberation times. Especially in sound studios or acoustic
measurement rooms these effects must be prevented. In order to
diminish these effects a Helmholtz resonator (see [1,2]) can be
used.

An appreciable smoothing of the frequency response is only
possible if the Helmholtz resonator is properly tuned, placed in
the right place and the damping of the resonator is set to an
appropriate value. To affiliate the optimal parameters it is neces-
sary to understand the physical interaction between a Helmholtz
resonator and the room mode. For this we use a model, published
by [3], in which the room is modeled as a continuum and the
resonator as a simple mass oscillator with a single degree of free-
dom. The eigenfrequency of a Helmholtz resonator is considered
in different sources [4–6] and is not subject of this study. Using this
model it is possible to draw an analogy to dynamic vibration
absorbers [7], such that it is possible to use similar mathematical
approaches.

Up to now the damping ratio of Helmholtz resonators has been
designed by trial and error. As a result of this study we achieve
optimal damping parameters, which will simplify the application
of Helmholtz resonators.

2. Modelling

The free interaction between a Helmholtz resonator and an
acoustic mode in a room is described by [3]:

€TNðtÞ þ 2fNxN
_TNðtÞ þx2

NTNðtÞ ¼ �
c2RNðrHRÞA

VKN

_nðtÞ; ð1Þ

€nðtÞ þ 2fHRxHR
_nðtÞ þx2

HRnðtÞ ¼ RNðrHRÞ
leff

_TNðtÞ; ð2Þ

in which TN(t)RN(r) is the potential function of the sound particle
velocity of a distinct room mode, with index N. The subscript HR
indicates parameters of the Helmholtz resonator. The term x
denotes the eigenfrequency and f is the damping ratio. The volume
of the room is V, and the mode normalization factor is KN. The term
c is used for the sound velocity, and A for the orifice area of the
resonator. The coordinate of the oscillating air in the resonator
orifice is n, and the effective length of this air column is leff. The
position of the resonator is given by rHR. Additionally, an active
sound source, such as a loudspeaker, can be placed at the position
rLS in the room. In analogy to the resonator, which works as a
reactive sound source, the loudspeaker can be modelled by the term

� c2RNðrLSÞ
VKN

Q LSðtÞ, in which QLS(t) describes the volume per unit time

displaced by the loudspeaker membrane, which yields

€TNðtÞþ2fNxN
_TNðtÞþx2

NTNðtÞ¼�
c2RNðrHRÞA

VKN

_nðtÞ�c2RNðrLSÞ
VKN

Q LSðtÞ: ð3Þ

The following arithmetic is analogous to that used for mechanical
vibration absorbers in [7]. Concentrating the variables TN(t) and

n(t) in a vector xðtÞ ¼ TNðtÞ
nðtÞ

� �
, Eqs. (2) and (3) can be written as:
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M€xðtÞ þ D _xðtÞ þ KxðtÞ ¼ qðtÞ; ð4Þ

with

M ¼
1 0
0 1

� �
; D ¼

2fNxN c1

c2 2fHRxHR

� �
; K ¼

x2
N 0

0 x2
HR

 !
;

ð5Þ

and

qðtÞ ¼ � c2RNðrLSÞ
VKN

Q LSðtÞ
0

 !
: ð6Þ

In the matrix D,

c1 ¼
c2RNðrHRÞA

VKN
and c2 ¼ �

RNðrHRÞ
leff

ð7Þ

are used. In the next step, the Eq. (4) is operated on by the Laplace
transform:

s2MxðsÞ þ sDxðsÞ þ KxðsÞ ¼ qðsÞ ð8Þ

The shorthand

SðsÞ ¼ s2M þ sDþ K ð9Þ

leads to

SðsÞxðsÞ ¼ qðsÞ; ð10Þ
S�1ðsÞqðsÞ ¼ xðsÞ: ð11Þ

Multiplying by s yields

sS�1ðsÞqðsÞ ¼ sxðsÞ; ð12Þ

and using the shorthand

YðsÞ :¼ sS�1ðsÞ; ð13Þ

results in

YðsÞqðsÞ ¼ sxðsÞ: ð14Þ

The sound pressure p(rM, s) in the room at a point rM is given by

pðrM; sÞ ¼ �q0RðrMÞ _TNðsÞ; ð15Þ
¼ �q0RðrMÞsx11ðsÞ: ð16Þ

This means that Y11(s), multiplied by the time invariant factor,
�q0R(rM), is the transfer function between a source signal, q(s),
and the sound pressure, p(rM, s), at any point in the room, whose
location is given by the vector rM. Inserting all of these described
values into Eq. (13) yields

Y 11ðsÞ ¼
sðs2 þ 2sfHRxHR þx2

HRÞ
�c1c2s2 þ ðs2 þ 2sfNxN þx2

NÞðs2 þ 2sfHRxHR þx2
HRÞ

:

ð17Þ

Eq. (7), combined with the expression for the eigenfrequency of the
Helmholtz resonator,

f0 ¼
c

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

VHRleff

s
; ð18Þ

leads to

c1c2 ¼ �
c2AR2

NðrHRÞ
leff VKN

;

¼ � c2AVHRR2
NðrHRÞ

VHRleff VKN
;

¼ �x2
HR

VHRR2
NðrHRÞ

VKN
: ð19Þ

The term VHR R2
NðrHRÞ

VKN
in Eq. (19), is analogous to what [3] termed

the coupling parameter e:

e ¼ VHRR2
NðrHRÞ

VKN
: ð20Þ

The term RN(r) is the location-dependent factor of the potential
function of the particular velocity, which is in zero in a node and
equal to one in an antinode. The term KN can be determined by

KN ¼
RRR

V RðrÞ2dr1dr2dr3

V
: ð21Þ

In rectangular shaped rooms it is KN ¼ 1
2 for axial modes, KN ¼ 1

4 for
tangential modes and KN ¼ 1

8 for oblique modes.
It is useful to cast these equations using dimensionless param-

eters. In addition to fHR, fN and e, the dimensionless term

m ¼ xHR

xN
ð22Þ

is introduced. Using these normalized values, the Eq. (17) can be
written as:

Y 11ðsÞ ¼
a1

b1
; ð23Þ

with

a1 ¼ s s2 þ 2sfHRmxN þ m2x2
N

� �
and

a2 ¼ s2em2x2
N þ s2 þ 2sfNxN þx2

N

� �
s2 þ 2sfHRmxN þ m2x2

N

� �
:

In the following the system is considered in a steady state, thus
the system can be transformed via a Fourier transformation into a
frequency spectrum with the variable x. Further the dimensionless
frequency g is used for the term x

xN
. Hence the square norm

jY11j2(g) becomes:

j Y 11j2ðgÞ ¼
a2

b2
; ð24Þ

with

a2 ¼ g2 g4 þ 2 �1þ 2f2
HR

� �
g2m2 þ m4� �

and

b2 ¼
�
g8 þ m4 � 2g2m2

�
1� 2f2

HR þ
�

1þ e� 2f2
N

�
m2
�

�2g6
�

1� 2f2
N þ

�
1þ e� 2f2

HR

�
m2
�
þ g4

�
1þ 2

�
e

þ2
�
�1þ 2f2

N

��
�1þ 2f2

HR

��
m2 þ 8efNfHRm3 þ

�
1þ e

�2
m4
��

x2
N:

Clearly xN affects jY11j2(g) with the factor 1
x2

N
. When jY11j2(g) is

plotted logarithmically, a change of xN only causes a translation
but not a change of the curve’s form, so that xN can be set to an
arbitrary value. For ease of comparison, xN should be chosen such
that the function with the parameter e = 0 has its maximum at
1 =: 0 dB. This function with the parameter e = 0 describes the
square of the sound pressure in the room without a Helmholtz res-
onator in it. Solving the equation for xN,

j Y 11ðe ¼ 0; m ¼ 1;g ¼ 1Þj2 ¼ 1 ð25Þ

yields xN ¼ 1
2fN

. Inserting this into Eq. (24) leads to

j Y 11j2ðgÞ ¼
a3

b3
ð26Þ

with

a3 ¼ 4f2
Ng2 g4 þ 2 �1þ 2f2

HR

� �
g2m2 þ m4� �
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