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a b s t r a c t

In this paper, a numerical method to model the dynamic behavior of an isotropic helical spring is coupled
with optimization algorithms to construct a dynamic optimization method based not only on mechanical
and geometrical objective functions and constraints; but also on dynamic ones. In the proposed dynamic
optimization problem, four geometric parameters are chosen as design variables (wire diameter, middle
helix diameter, active coils numbers and spring pitch). In addition of mechanical and geometrical con-
straints, dynamic ones related to natural frequencies of the helical spring are added. Two objective func-
tions are chosen to be optimized: the spring mass and its natural frequencies. This method is then applied
to the case of circular cross section helical spring, and then optimization results are presented and
discussed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization of the mechanical behavior of curved beams is
an efficient tool in the design of mechanical components belonging
to this kind of structures. One of these components, the helical
spring which is one of the components used in many mechanical
systems to provide a variety of functions (maintenance, suspen-
sion, energy accumulation, shock absorption, etc.). When a de-
signer needs to incorporate a spring in the system, certain
criteria must be known to help him to choose the appropriate
spring. These criteria are more or less numerous and accurate
according to the progress in the design process. For this, a new syn-
thesis tools have recently appeared in the spring design. They used
numerical optimization methods in order to give the user the
opportunity to express freely their needs and to propose a spring
respecting both its own criteria and all constraints. Therefore hav-
ing a study of this component allows better design to meet the
mechanical requirements needed in the industry.

Spring optimization techniques in the literature were made to
minimize the mass, volume, stress distribution, movements accord-
ing to certain geometric and mechanical parameters such as the
space on which the spring works and the number of active coils.
Kulkarni and Balasubrahmanyam [1] presented simplified graphs
for the optimization of the helical spring by minimizing the mass,
the free length and the volume. Yokota et al. [2] developed a tech-
nique for optimization a helical spring to minimize the mass taking
into account the shear stress, the number of active coils, the spring

wire diameter and the middle coil diameter using a genetic algo-
rithm. Also Deb and Goyal [3] and Kannan and Kramer [4] com-
pared their results based on the genetic algorithms and the
augmented Lagrange method with results obtained by Sandregen
[5] using a branch and bound approaches. Imaizumi et al. [6] and
Hernandez [7] optimize the wire shape used for spring manufac-
ture. Xiao et al. [8] introduced a new method for optimization of
the helical spring based on the Particle Swarm Optimization algo-
rithm and the minimum mass of helical spring as the objective
function, with the geometric parameters as design variables and
the shear stress, the maximum axial deflection, the critical fre-
quency, the bucking, the fatigue strength, the condition of coils
not touch, space and dimension are taken as constraint conditions.

Although the literature is rich of dynamic studies of helical
spring, all these studies have not taken into account the dynamic
parameters (natural frequencies, dynamic response ...) as con-
straints or as an objective function when they tried to optimize
the mechanical behavior of the helical spring. In the first dynamic
studies of helical springs, the dynamic response has been ad-
dressed by limiting the analysis to short displacements around
the equilibrium position. When the spring becomes the subject
of large impact load oscillations, its behavior becomes nonlinear.
The equations of motion describing this behavior were derived
by Philips and Costello [9]. Stokes [10] conducted analytical and
experimental studies to investigate the spring radial displacement
due to longitudinal impact. Mottershead [11] developed a finite
element for solving differential motion equations. Yilidirim [12]
studied the helical spring with circular and square sections by
developing the stiffness matrix from the linear relationship be-
tween effort and strain, taking into account the effect of transverse
shear. The resolution of the modal equation was made by the
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method of subspace iteration to determine the natural frequencies
of the spring. The influence of changes of some parameters (angle
of the helix, middle coil diameter...) was studied. Forrester [13]
analyzed the static and the dynamic behavior of the spring by a fi-
nite element and analytical methods to determine the stiffness and
natural frequencies of the structure taking into account the curva-
ture of the spring, the effects of shear and the geometric effects of
spring section. These methods are based on solving differential
equations with boundary conditions. In the first analysis, the
spring was modeled by an assembly of beam elements. In the sec-
ond analysis, the determination of the three-dimensional stiffness
matrix of a helical spring was made. Taktak et al. [14] developed a
two node finite element with six degrees of freedom per node, able
to model the behavior of a three dimensional isotropic helical
beam. Transverse shear and torsion effects and all geometric
parameters are taking into account to study the spring dynamic re-
sponse for harmonic excitations.

In this paper, an optimization method of the helical spring
which incorporates the dynamic parameters as constraints and
objective function to optimize the mechanical behavior of the heli-
cal spring in terms of its geometrical parameters (cross section,
curvature, pitch ...) is presented. It is based on the numerical
formulation presented in a previous work of Taktak et al. [14] to
compute the dynamic response of the helical spring.

The outline is as follow: in the second section, the method used
for calculating the dynamic response of the helical spring based on
the modal superposition method is presented. In the third section,
the proposed dynamic optimization method of the helical spring is
presented by developing the objective functions and the design
variables of the problem as well as the constraints conditions. This
leads to establish a complex mathematic dynamic optimal design
model of the helical spring. Finally, the problem is solved using
an optimization algorithm, which is incorporated in MATLAB code.
The numerical results were presented and discussed.

2. Dynamic analysis of the helical spring

The equation of motion of the helical spring is written as [14]:

½M�f€Ug þ ½C�f _Ug þ ½K�fUg ¼ fFg ð1Þ

[M] and [K] are respectively the helical spring mass and stiffness
matrices [14–16]. [C] is the total damping matrix. {U} is the global
nodal displacements vector and {F} is the vector of external forces.

The description of the movement of this system with n degrees
of freedom can be made by its spatial coordinates or by its modal
coordinates. The movement’s equation of the structure without a
second member admits a complete linear orthogonal real modes
basis of the non-damped system. These eigenmodes are character-
ized by the eigenpulsations xi and also by their eigenvectors {Vi}.
The modal matrix is defined by [17]:

½U� ¼ ½fV1g; fV2g; . . . ; fV12g� ð2Þ

The projection of the motion’s equation on the modal basis
leads to build a system of n decoupled equations. The equation of
the motion according to the generalized parameters is written as:

½Mm�f€aðtÞg þ ½Cm�f _aðtÞg þ ½Km�faðtÞg ¼ fFmg ð3Þ

where a(t) is the generalized displacements vector defined as:

fUðtÞg ¼ ½U�faðtÞg ð4Þ
½Mm� ¼ ½U�T ½M�½U� ¼ diagðmiÞ ð5Þ

is the generalized mass matrix.

½Km� ¼ ½U�T ½K�½U� ¼ diagðmix2
i Þ ð6Þ

is the generalized stiffness matrix.

½Cm� ¼ diagð2mixiniÞ ð7Þ

is the generalized damping matrix. ni is the reduced modal damping
coefficients [18]:

fFmg ¼ ½U�TfFg ¼
f1

..

.

f2

8>><
>>:

9>>=
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{Fm} is generalized forces vector.
From Eq. (3) a system of the motion equations of n decoupled

oscillators is obtained as follow:

mi€ai þ 2minixi _ai þmix2
i ai ¼ fi i ¼ 1; . . . ;n ð9Þ

The modal frequency response of the variables ai(t) is simply
the solution of n equations of motion transformed by Fourier is
written:

mix2
i aiðxÞ �mix2aiðxÞ þ 2jminixixaiðxÞ ¼ fiðxÞ i ¼ 1; . . . ;n

ð10Þ

The solution is:

aiðxÞ ¼
fiðxÞ

ki

1� x
xi

� �2
� �

þ 2jni
x
xi

; i ¼ 1;2; . . . ;n ð11Þ

where

ki ¼ mix2
i ð12Þ

The frequency response of the system is the product of modal
variables by modes:

fUðxÞg ¼
Xn

i¼1

aiðxÞfUig ¼
Xn

i¼1

fiðxÞ
ki

1� x
xi

� �2
� �

þ 2jni
x
xi

fUig ð13Þ

3. Development of the dynamic optimization method of the
helical spring

3.1. Design variables

In our study a circular cross section spring is studied. Four geo-
metrical proprieties of the spring are chosen as design variables,
these parameters are the wire diameter d, the middle helix diam-
eter D, active coil number na and the helix pitch P. These parame-
ters are presented in the design parameters vector:

fXg ¼ h x1 x2 x3 x4 iT ¼ hd D na P iT ð14Þ

The other parameters are supposed fixes.

3.2. Constraints conditions

In what follows, it is assumed that the following hypotheses are
true:

� The wire section is and remains circular.
� The helix is slightly inclined (a < 7�).
� The ends of the springs are ground and strengthened to make a

perpendicular plans to the spring axis to support it without
friction.

3.2.1. Condition of shear stress
To avoid the structure damage, when the spring is loaded with

an axial force~F, the maximum shear stress smax should be less than
the allowable shear resistance Rpg [8]:
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