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a b s t r a c t

Rolling bearing faults are one of the major reasons for breakdown of industrial machinery and bearing
diagnosing is one of the most important topics in machine condition monitoring.

The main problem in industrial application of bearing vibration diagnostics is the masking of informa-
tive bearing signal by machine noise. The vibration signal of the rolling bearing is often covered or con-
cealed by other structural vibrations sources, such as gears. Although a number of vibration diagnostic
techniques have been developed over the last several years, in many cases these methods are quite com-
plicated in use or only effective at later stages of damage development. This paper presents an EMD-based
rolling bearing diagnosing method that shows potential for bearing damage detection at a much earlier
stage of damage development.

By using EMD a raw vibration signal is decomposed into a number of Intrinsic Mode Functions (IMFs).
Then, a new method of IMFs aggregation into three Combined Mode Functions (CMFs) is applied and
finally the vibration signal is divided into three parts of signal: noise-only part, signal-only part and
trend-only part. To further bearing fault-related feature extraction from resultant signals, the spectral
analysis of the empirically determined local amplitude is used. To validate the proposed method, raw
vibration signals generated by complex mechanical systems employed in the industry (driving units of
belt conveyors), including normal and fault bearing vibration data, are used in two case studies. The
results show that the proposed rolling bearing diagnosing method can identify bearing faults at early
stages of their development.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Rolling element bearings, also known as rolling bearings, are
widely used in rotary machinery systems. Rolling bearings fall
out of service for various reasons, such as unexpected heavy loads,
unsuitable or inadequate lubrication and ineffective sealing. The
components that often fail in rolling bearings are the rolling ele-
ments, the inner race and the outer race. Rolling bearings’ diagnos-
tics is important for guaranteeing machine safety and production
efficiency. The damage of a bearing may cause the breakdown of
a rotary machine, leading to serious consequences. One of the
key issues in rolling bearing diagnostics is to detect the defect at
its early stage and alert the machine operator before it develops
into a catastrophic damage. Contrary to oil condition and thermal
state monitoring methods that detect damages of bearings at very
late stages of their development (close to catastrophic stages),

vibroacoustic analysis detect most of the damages yet at much ear-
lier stages of bearings’ technical degradation.

Rolling bearing is a complex vibration system whose compo-
nents (e.g. rolling elements, outer race, inner race and cage) inter-
act to generate complex vibration signal. When a fault on one
surface of a bearing element strikes another surface, an impact is
generated. The successive mechanical impacts (which are the re-
sult of the passage of the fault through the load zone) produce a
series of impulses observed in a bearing signal. These mechanical
impacts modulate the bearing signal at characteristic frequencies
depending on the localization of the defect, such as: Fundamental
Train (Cage) frequency (fFTF), Ball Spin Frequency (fBSF), Ball Fault
Frequency (fBFF = 2�fBSF), Ball Pass Frequency Outer Race (fBPFO)
and Ball Pass Frequency Inner Race (fBPFI) [1,2]. Calculations of
the characteristic frequencies assume that the rolling elements
do not slide, but roll over the race’s surfaces. There is always some
slip and real characteristic frequencies differ from calculated char-
acteristic frequencies by about a few percent [3].

There are two main groups of diagnosing techniques using
vibration signals: time-domain and frequency-domain analysis tech-
niques. Traditional time-domain analysis calculates characteristic
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features from vibration signal waveform, such as root mean square,
skewness, kurtosis or crest factor and they have been applied with
limited success for rolling bearing diagnosing [4]. Kurtosis of vibra-
tion signal can be used to detect bearing faults at early stages of
their development [5]. The kurtosis is a statistical parameter based
on the fourth and the second moments of a signal, which is close to
3 for Gaussian noise and other stationary signals, but large for
impulsive signals containing series of impulses, such as a signal
generated by damaged bearing. However, precise nature of the
fault cannot be defined by the kurtosis analysis and for such infor-
mation it is necessary to use a more sophisticated diagnostic meth-
od. The advantage of frequency-domain analysis, based on the
transformation of a signal in the frequency domain, is its ability
to easily identify certain spectral components of the signal. With
high frequency resonance analysis (also known as envelope analy-
sis) it is possible to identify not only the occurrence of the bearing’s
fault, but also identify this fault, like damage in the outer race or in
the rolling element [1]. In short, the conventional Hilbert-
transform-based envelope detection is based on amplitude demod-
ulation and consists of band-pass filtering and the Hilbert
transform. Defects in rolling bearings can be detected and localized
by discovering spectral components of vibration signal with the
frequencies (and their harmonics) typical for the fault.

Usually, bearing vibration signal is collected with an accelerom-
eter installed on the bearing housing where the vibration sensor is
often subject to collecting active vibration sources from other
mechanical components of the machine. The vibration signal from
a bearing at an early stage of defect development may be masked
by machine noise, making it difficult to detect the fault by vibra-
tion analysis techniques [1,6]. Therefore, a method of diagnostic
signal extraction is needed to provide useful information regarding
the bearing condition. A number of techniques are described for
the separation of bearing signals from background signals which
mask it [7–10]. For some specific requirements (e.g. time-triggered
signal acquisition), not all of them can be always applied in indus-
trial reality. Moreover, the effectiveness of some techniques de-
pends in essential degree on proper values of a given technique’s
parameters (e.g. convergence factor, filter order), which must be
determined in an empirical study.

There are also more advanced techniques related to time fre-
quency methods [11], especially wavelets [12] and dedicated ap-
proaches for signal enhancement using signal modeling [13,14]
or deconvolution technique [15]. Relatively new interesting ap-
proach is related to algorithms for searching for informative fre-
quency band [31,33]. Diagnostics under non-stationary load and
operating speed condition is discussed in recent papers given by
different authors [9,11,21,30,32].

Empirical Mode Decomposition (EMD) has attracted attention
in recent years due to its ability to self-adaptive decomposition
of non-stationary signals. Recent publications on EMD [16–21]
show its advantages for non-stationary signals processing and con-
firm its effective application in many diagnostic tasks.

In this paper, an EMD-based approach for rolling bearing diag-
nostics is investigated. By using EMD a raw vibration signal is
decomposed into a number of Intrinsic Mode Functions (IMFs).
Then, a new method of IMFs aggregation into three Combined
Mode Functions (CMFs) is applied and finally the vibration signal
is divided into three parts of signal: noise-only part, signal-only
part and trend-only part. To further bearing fault-related feature
extraction from resultant signals, the spectral analysis of the
empirically determined local amplitude is used. To validate the
proposed method, raw vibration signals generated by complex
mechanical system employed in the industry (driving units of belt
conveyors), including vibration data of damaged and undamaged
bearings, are used in two case studies. The results show that the

proposed rolling bearing diagnosing method can identify the bear-
ing faults at early stages of their development.

2. A brief look into Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) has been proposed by
Huang et al. [22]. This self-adaptive decomposition method decom-
poses any signal into empirical modes which represent different
oscillation modes embedded in the signal. Based on the EMD algo-
rithm, any original signal xo(t) can be reconstructed by a linear
superposition of empirical modes:

xotÞ ¼
Xn

i¼1

ciðtÞ þ rnðtÞ; ð1Þ

where ci(t) is i-th empirical mode and rn(t) is the final residue after
the extraction of n empirical modes. Each empirical mode ci(t),
called Intrinsic Mode Function (IMF), fulfills the following two con-
ditions [22]: (1) in the whole empirical mode, the number of mode
local extremes and the number of mode zero-crossings are equal or
differ at most by one and (2) at any point, the local average of upper
and lower envelope is zero.

The algorithm for the extraction of IMFs from original signal
xo(t) is called sifting process and it consists of the following steps
[23]:

Step 1: Define x(t) = xo(t) and r0(t) = xo(t).
Step 2: Define the maximum number of extracted IMFs.
Step 3: Identify all the local extremes (maxima and minima) of
x(t).
Step 4: Connect all the local maxima (respectively minima)
with a line known as the empirically determined upper enve-
lope Emax(t) (respectively the lower envelope Emin(t)).
Step 5: Construct the mean of empirically determined upper
and lower envelope m(t) = 0.5�(Emin(t) + Emax(t)).
Step 6: Define the detail (proto-IMF) as d(t) = x(t) �m(t) and
replace x(t) by d(t).
Step 7: Repeat steps 3–6 until d(t) meets the IMF conditions and
the stoppage criterion of the sifting process is fulfilled, then
derive i-th IMF from d(t) and replace x(t) by ri(t) = ri–1(t) � d(t).
Step 8: If the stoppage criterion of the signal’s decomposition is
fulfilled then finish the decomposition process; otherwise, go to
step 3.

The second IMF condition is too rigid to use, so it is necessary to
change it to implement the EMD. The local average of upper and
lower envelope must be close to zero according to some criterion.
The evaluation (how small it is) of the amplitude of the local aver-
age may be done in comparison with the amplitude of the corre-
sponding mode. In [24] authors introduce a new criterion based
on the local mode amplitude a(t) = 0.5�(Emax(t) � Emin(t)) and the
evaluation function r(t) = |m(t)/a(t)|. In this paper, d(t) meets the
second IMF condition, when max(r(t)) < h (the coefficient h was
equal to 0.2).

A critical part of the EMD procedure is the stoppage criteria of
the sifting process and decomposition process. The stoppage crite-
rion of the sifting process determines the point when sifting is
complete and a new IMF has been found. Two different stoppage
criteria of the sifting process were considered.

The first stoppage criterion of the sifting process is determined
by using a Cauchy type of convergence test [22]. If the two details
(proto-IMFs) from successive iterations are close enough to each
other, it is assumed that the last extracted detail is an IMF. The
normalized squared difference SDk between two successive details
dk�1(t) and dk(t) during k-th iteration is defined as:
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