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a b s t r a c t

The present paper deals with an original time-domain approach applied to outdoor sound propagation
under meteorological effects. The transmission line matrix method, based on the Huygens’ principle,
had already been validated over impedant grounds and complex topography. The presented formulation
proposes to take into account meteorological effects (wind speed and temperature) through the relative
sound speed. The necessary wavefront direction is determined through the calculation of the averaged
intensity vector direction. A good agreement is found between simulations of both the transmission line
matrix and parabolic equation methods. A relevant use of the method is shown in the framework of envi-
ronmental acoustics and initial applications are proposed in Part 2.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many numerical models have been developed in order to simu-
late meteorological effects on outdoor sound propagation. One can
cite analytical formulations such as geometrical methods (e.g. ray
or gaussian beam tracing approaches) [1,2] or numerical models
based on the resolution of the wave equation. Among these latter
models, the Parabolic-Equation (PE) based method has been widely
used for this purpose [2–5]. Over the last decade, with the increas-
ing power of computational resources, time-domain methods have
also been developed and applied successfully in environmental
acoustics [6–9]. The most popular time-domain approach is
undoubtedly the finite-difference in the time-domain (FDTD)
method. Dragna has investigated for instance sound propagation
over a 100 m distance within a realistic context in a frequency
range between 100 Hz and 2 kHz [10]. An alternative time-domain
method is the Transmission Line Matrix (TLM) approach [11]. This
model seems very promising for describing complex outdoor
sound propagation yet has not been used extensively. In order to
incorporate the atmospheric effects, Hofmann has proposed an
interesting formulation, which is however limited to temperature
effects [12]. A first attempt to define a TLM scheme with unidirec-
tional mean flow (e.g. wind field) into the TLM grid has been
provided by Kagawa and his co-workers, but its method is only
successful for single wind speed direction effects [13]. In this

paper, the approach, inspired by a method proposed by Dutilleux
[14], consists of modifying the sound speed at each point of the dis-
cretized domain as a function of the temperature and wind speed
projection on the wave front direction.

This paper aims to present the integration of meteorological ef-
fects in the TLM model and then its comparison with a PE model in
academic cases. The associated paper (part 2) addresses its valida-
tion by comparison with results stemming from Lannemezan’s
2005 experimental campaign [15]. The wind and temperature
fields are obtained from the meso-scale meteorological model
Meso-NH [16,17].

The first section presents the TLM model. In Section 2 the for-
mulation taking into account wind speed and temperature effects
is described. The last section proposes evaluating the ability of
the TLM to treat outdoor sound propagation problems through a
comparison with PE results in two academic cases.

2. TLM modelling

The TLM method is based on the Huygens’ principle, which
states that a wavefront consists of a set of secondary sources radi-
ating spherical wavelets whose envelopes can be broken down into
a new generation of secondary sources as well. Hofmann has
shown the equivalence of this approach with the resolution of
the discretized wave equation [12]. Other authors have also
derived the two-dimensional homogeneous cartesian formulation
of TLM from a Lattice Boltzmann model by removing nonlinear
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terms, in choosing a suitable viscosity and selecting a square grid
[18].

The TLM statement allows describing sound propagation
through both a spatial and temporal discretization of the medium
as well as the propagation phenomena. This concept is numerically
conveyed by replacing the propagation medium with a transmis-
sion lines network, through which sound propagates in the form
of sound pulses. Thereby, as shown in Fig. 1, each junction, or node,
links N = 4 or N = 6 transmission lines to each other in two dimen-
sions (2D) or three dimensions (3D) respectively. Thereafter, the
number of dimensions is called d such that d = 2 and d = 3 for cre-
ating a 2D and 3D model respectively. An additive branch, of index
N + 1, is inserted at each node of the transmission line network, in
order to consider the inhomogeneities of the propagation medium
(i.e. branch 7 in Fig. 1). According to the TLM concept, sound prop-
agates in the form of pulses. Thus, incident and scattered pulses are
considered at each transmission lines junction and time increment.
The propagation medium is discretized by means of a uniform
cartesian meshing of mesh size (Dl)d, with Dl being the spatial step
such that:

Dl 6
k
ffiffiffi
d
p

10
; ð1Þ

with k the minimal wavelength of the simulation.
The scattered pulses at time increment t and node of discrete

coordinates r such that

r ¼
ði; jÞ for d ¼ 2 ði:e: in 2DÞ;
ði; j; kÞ for d ¼ 3 ði:e: in 3DÞ;

�
ð2Þ

are related with the incident pulses at this node at the same time
iteration by the following matrix relation:

tSr ¼ tDr � tIr; ð3Þ

where tIr and tSr are the vectors composed of the incident pulses t I
n
r

and scattered pulses tS
n
r through each transmission line n (n = 1 to

N + 1) respectively. tDr is a (N + 1) � (N + 1) scattering matrix given
by:

tDr ¼
2

tgr þ 2d

tar 1 : 1 tgr

1 tar : 1 tgr

: : : : :

1 1 : tar gr

1 1 : 1 tbr

2
6666664

3
7777775
; ð4Þ

with

tar ¼ � tgr þ 2ðd� 1Þ
2

ð5Þ

and

tbr ¼ tgr � 2d
2

; ð6Þ

where tgr allows locally modifying, and if needed during the simu-
lation, the sound speed in the propagation medium. In other words,
this term is used in order to model an inhomogeneous atmosphere
and is defined in Section 3.1.

Finally, the nodal pressure is written as a combination of all
incident pulses, i.e.:

tpr ¼
2

tgr þ 2d

XN�1

n¼1
t I

n
r þ tgr tI

N
r

 !
: ð7Þ

In addition, the scattered pulses from nodes adjacent to node
(i, j,k) at time increment t become the incident pulses to this node
at the next time iteration t + Dt, with Dt representing the time step
defined by:

Dt ¼ Dlffiffiffi
d
p

c0

; ð8Þ

with c0 the adiabatic sound speed. This diffusion process is gov-
erned by connection laws depicted in Fig. 2 such as:

tþDtI
n
r ¼ tS

m
r�n

ð9Þ

and

tþDtI
N
r ¼ tS

N
r ; ð10Þ

with

n
r�n

� �
¼

m� 1
r�

� �
if m is even;

mþ 1
rþ

� �
if m is odd;
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>>>:
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and

r�n ¼
ði� 1; j; kÞ; for n ¼ 1 or 2;
ði; j� 1; kÞ; for n ¼ 3 or 4;
ði; j; k� 1Þ; for n ¼ 5 or 6:

8><
>: ð12Þ

Boundaries are implemented in the TLM model at a distance Dl/
2 from the nearest node in order to ensure the synchronism of
sound pulses. They can be characterized by a reflection coefficient
in pressure [11] or by an impedance boundary condition [19]. In
addition, absorbing layers can be introduced in order to model
an unbounded propagation medium as depicted in Ref. [20].

3. TLM formulation for acoustic propagation in a
meteorological field

Regarding outdoor sound propagation, the temperature and
wind fields combine to produce local variations of sound speed.
The literature review above has shown that the implementation
of thermal gradients is straightforward in TLM since sound speed
is defined at the local level, whereas a suitable implementation
for wind gradients is still underdeveloped. In order to address
the general case of outdoor sound propagation, both thermal and
wind effects must be taken into account simultaneously.

In order to allow for wind speed gradients in the TLM model, the
approach developed in this section satisfies the previous require-
ment since it is based on the so-called effective sound speed. This
approach requires knowledge of the local direction of the wave-
front. A proof of concept of this approach for the TLM method
has been proposed by one of the authors in Ref. [14].

Fig. 1. Representation of the incident (left) and the scattered (right) pulses at node
(i, j,k) in 3D.
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