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a b s t r a c t

This work extends the application of finite volume method (FVM) to structural–acoustic problems. A
three-dimensional time domain FVM (TDFVM) is proposed to predict the transient response and natural
characteristics of structural–acoustic coupling systems. Acoustic wave equation in heterogeneous med-
ium and structural dynamic equation are solved in fluid and solid sub-domains respectively. The struc-
tural–acoustic coupling is implemented according to normal components of particle acceleration
continuity condition and normal traction equilibrium condition at the interface. The computational
domain is discretized with four-node tetrahedral grid which is generated easily and has strong adaptabil-
ity to complicated geometries. Numerical experiments are carried out to examine the accuracy of the
method in both time domain and frequency domain. The results show good agreement with analytical
solutions and numerical results. For structural–acoustic problem, TDFVM has the capability to consider
the heterogeneity of both fluid and solid.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In noise control field, the structural–acoustic coupling problem
is an important research topic which occurs in many engineering
applications. Many researchers have investigated this problem
and several analytical solutions have been provided [1–3] for reg-
ular coupling systems. However, it is impossible to obtain analyti-
cal solutions for the coupled systems in most practical problems.
Therefore, much effort has been devoted to the development of
numerical method. Toyoda and Takahashi [4] employed finite dif-
ference method (FDM) to predict the architectural structure-borne
sound. However, the poor adaptability of FDM in irregular areas of-
ten restricts its application in complicated engineering problems.
On the other hand, FEM owns well geometrical flexibility which
makes it widely applied in structural–acoustic field [5–10].

Structural–acoustic coupling problem can be regarded as a par-
ticular fluid–structural–acoustic coupling case without flow. For
such a multi-physics problem, it is necessary to adopt a unified
numerical method [11]. Because transferring data from one solu-
tion procedure to another may lead to significant problems in com-
putational convergence, which may even lead to computational
divergence [12].

In fact, solid mechanics and fluid mechanics are governed by
the same equation, but differ in constitutive relations [13]. The

governing equation of acoustic wave is also derived from fluid ba-
sic equations. FEM has been applied to solve fluid–structure inter-
action problems [14–16]. But the low speed of FEM solution
constrains its application in computational fluid dynamics (CFD)
problems and multi-physics problems [17].

Finite volume method (FVM) has been extended to structural
problems in recent years. Demirdžić et al. [13,18] first employed
FVM for stress analysis. Wheel [19] applied FVM to analyze stress
concentration problem and even showed FVM achieves better
accuracy than FEM for a NAFEMS (National Agency for FEMs and
Standards) steel elliptic membrane benchmark. Wheel [20] pro-
posed a finite volume formulation for determining small deforma-
tions in incompressible materials under plane strain conditions
which is still difficult for FEM. Slone et al. [12] presented a proce-
dure to evaluate the dynamic structural response of elastic solid
domain. Fallah et al. [21] developed the cell vertex and cell cen-
tered forms of FVM for plate bending analysis. The literatures men-
tioned above demonstrate the potential capability of FVM in solid
problems. And considering the wide applications of FVM in CFD,
FVM can be regarded as a unified alternative approach for struc-
tural–acoustic coupling problems which is rarely attempted.

This paper aims to extend the application of FVM to acoustic
and structural–acoustic problems. This investigation employs a
FVM approach developed from control volume finite element
method (CVFEM). CVFEM was first proposed for convection diffu-
sion problems by Baliga et al. [22]. It not only follows conservation
laws like FVM but also owns the adaptability for irregular areas like
FEM. Therefore, as soon as it was put forward the emphasis is on its
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application and development. CVFEM is an effective numerical
approach in FVM family to deal with the unstructured domain
problems. It should be noted that there is no need to calculate
and store the element stiffness matrix, so the computational cost
and memory requirements are much less than FEM [23].

Structural–acoustic coupling problems can be solved in fre-
quency domain (FD) and time domain (TD). The FD modeling algo-
rithms are applied widely while the TD ones are less adopted
compared with the former. It may be due to the less computational
time cost by FD modeling. However, FD modeling consumes more
computer memory for the storage of complex matrix. Hence, FD
modeling algorithms may not be appropriate for large and compli-
cated problems. On the other hand, TD modeling is more close to
the real physical process from the standpoint of dynamics, since
structural vibration or acoustic radiation is a kind of energy prop-
agation in media. The entire information in the involved frequency
band can be obtained within one simulation by TD modeling.

In this paper, time domain finite volume method (TDFVM) is
developed based on unstructured staggered-grids to solve struc-
tural–structural, acoustic–acoustic and structural–acoustic cou-
pling problems. The accuracy is validated by comparing the
predicted results with analytical solutions and numerical results.
Then TDFVM is applied to analyze the transient response and nat-
ural characteristics of a three-dimensional (3D) enclosed cavity,
namely a structural–acoustic coupling system. The effects of the
variation of water depth on natural characteristics of the system
are discussed. A different material cavity filled with air and water
is also analyzed.

2. Mathematic models

Let XS and XF be the structural and acoustic sub-domains,
respectively, as shown in Fig. 1. The structural–acoustic interface
is denoted by UFSI. The boundaries of XS contain clamped boundary
UC, force boundary Uf and free boundary UN. ns = (nx, ny, nz) is the nor-
mal vector of the structural sub-domain. The acoustic sub-domain
consists of air and water. The air–water interface is denoted by UFI.

According to the Newton’s second law, the equilibrium equa-
tion in a control volume of the structural sub-domain isZ

XS
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€udX ¼

Z
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where qS is the material density, u ¼ ðux;uy;uzÞ is the acceleration
vector, r is the Cauchy stress tensor, and F is body force which is
omitted in the following equations.

The constitutive equations for isotropic linear elastic body are
as follows:
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where k and G are the Lamé constants as k = El/[(1 + l)(1 � 2l)],
G = E/[2(1 + l)]. E is the Young’s modulus and l is the Poisson’s
ratio.

The integral form of acoustic wave equation in heterogeneous
media can be expressed by [24]

Z
XF

1
qF c2

@2p
@t2 dX ¼

Z
XF

r � 1
qF
rp

� �
dX ð3Þ

where p is the acoustic pressure, qF is the media density and c is the
acoustic wave speed.

The interaction between the structural and acoustic sub-do-
mains is carried out by

�pn ¼ r � n ð4Þ

�rp=qF ¼ €u ð5Þ

According to Eq. (4), when the acoustic wave meets the struc-
tural–acoustic interface UFSI, the acoustic pressure p acts on the
interface just like a force. At the same time, when stress wave
reaches the interface, the structural acceleration causes the oscilla-
tion of the particles in the acoustic medium, and the expression of
Eq. (5) is similar to the momentum equation of the acoustic wave.

In structural sub-domain, two types of boundary conditions are
considered as

ðr � nÞCN
¼ 0 ð6Þ

ðuÞCC
¼ 0 ð7Þ

where u = (ux, uy, uz) denotes the displacement vector.
In acoustic sub-domain, there are two kinds of total-reflecting

boundary conditions [25]. When acoustic wave incidences from
air to water, it can be treated approximately as v = 0 at the inter-
face where v is the normal velocity, namely op/on = 0. On the other
hand, when acoustic wave incidences from water to air, it can be
treated approximately as p = 0 at the interface.

3. Numerical methods

In this section, numerical discretization for structural and
acoustic sub-domains by TDFVM is discussed in detail. Then the
formulations and algorithms for the structural–acoustic coupling
are presented.

3.1. Structural sub-domain

The 3D computational domain is divided by tetrahedrons and
an arbitrary tetrahedron G1234 is shown in Fig. 2. Acceleration,
velocity and displacement are calculated on the vertexes 1, 2, 3,
4, and the stress in G1234 is supposed to be uniform. Material prop-
erties are defined at the grid center with uniform distribution in
the grid. Therefore, the left hand side of Eq. (1) can be read in
the following form based on the assumption of a uniform distribu-
tion of the acceleration in the control volume around vertex 1Z

V
qS

€udV ¼ qS
€uV ð8Þ

where V ¼
Pn

i¼1ðVi=4Þ is the volume of the control volume, and Vi is
the volume of the ith tetrahedron grid around vertex 1.

Invoking the Gauss theorem, the right hand side of Eq. (1)
becomes

Z
V
r � rdV ¼

I
s
r � ndA ¼

XN

i¼1

ðr � A1Þi ð9Þ
Fig. 1. Structural–acoustic coupled system.
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