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a b s t r a c t

Acoustic imaging is a standard technique for mapping acoustic source powers and positions from limited
observations on microphone sensors, which often causes an ill-conditioned inverse problem. In this arti-
cle, we firstly improve the forward model of acoustic power propagation by considering background
noises at the sensor array, and the propagation uncertainty caused by wind tunnel effects. We then pro-
pose a robust super-resolution approach via sparsity constraint for acoustic imaging in strong back-
ground noises. The sparsity parameter is adaptively derived from the sparse distribution of source
powers. The proposed approach can jointly reconstruct source powers and positions, as well as the back-
ground noise power. Our approach is compared with the conventional beamforming, deconvolution and
sparse regularization methods by simulated, wind tunnel data and hybrid data respectively. It is feasible
to apply the proposed approach for effectively mapping monopole sources in wind tunnel tests.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic imaging is widely used for acoustic source power
reconstruction and localization. It can provide the useful insights
into acoustic performance, acoustic comfort and machinery secu-
rity in automobile and aeronautic industries for wind tunnel tests
[1–4]. In this article, we mainly focus on the signal processing tech-
niques applied in acoustic imaging, such as the Conventional
BeamForming (CBF), deconvolution and regularization methods.
The CBF method [5] is a direct, robust and rough estimation of
source powers and positions, since its spatial resolution is limited
due to the high side-lobes. The MUltiple SIgnal Classification (MU-
SIC) [6] can greatly improve the CBF resolution, but original MUSIC
requires the high signal-to-noise ration (SNR) or the exact number
of sources to make the subspace separation. Besides, the MUSIC
could not directly reconstruct source powers due to its pseudo-
power optimization. Based on the CBF, the acoustic power propa-
gation can be modeled by a determined linear system of equations,
which could hardly be solved by direct inversions due to the
invertible propagation matrix. Therefore, the deconvolution meth-
ods, like the CLEAN [7], can iteratively extract strong sources from
the blurry beamforming powers. But the CLEAN could leave out

weak sources interfered by strong background noises; and some
important parameters of CLEAN have to be empirically selected
for good performance. Recently, the Deconvolution Approach for
Mapping of Acoustic Source (DAMAS) [8] has become a break-
through and been effectively applied in acoustic imaging for wind
tunnel tests by the NASA. The DAMAS can iteratively solve the
acoustic power propagation model under the non-negative con-
straint on source power variables. But the dominant drawback of
the DAMAS is the sensitivity to background noises. So that the
Diagonal Removal (DR)-DAMAS [8] has been proposed for the noise
suppression; however, weak sources could be also removed off by
the DR-DAMAS. To overcome the deconvolution drawbacks, the
DAMAS with sparsity constraint (SC-DAMAS) [9] can greatly im-
prove the spatial resolution and improve the robustness, but SC-
DAMAS could cause overweening effects due to the sparsity
parameter selection. The Covariance Matrix Fitting (CMF) method
[10] can effectively improve the robustness by jointly estimating
the source power covariance matrix and background noise power;
however, the original CMF is not feasible to use because of its huge
dimensionality of variables in covariance matrix. For robust acous-
tic imaging, the Spectral Estimation Method (SEM) and its exten-
sions [11,12] are proposed to subtract the reference noise power
from the measured data; and this reference noise power can be ob-
tained beforehand by measuring the observed signals without any
object in wind tunnel. However, the estimated noise power might
be different from the case where the object is installed in the wind
tunnel. Furthermore, sparse regularization methods [13–15] have
been widely developed by using the ‘1-norm. However, some of

0003-682X/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.apacoust.2013.08.007

⇑ Corresponding author. Tel.: +33 (0)1 69 85 1743; fax: +33 (0)1 69 85 17 65.
E-mail address: Ning.CHU@lss.supelec.fr (N. Chu).

1 The author’s Ph.D. study is financed by China Scholarship Council (CSC) and École
Supérieure d’Électricité (SUPELEC) France.

Applied Acoustics 76 (2014) 197–208

Contents lists available at ScienceDirect

Applied Acoustics

journal homepage: www.elsevier .com/locate /apacoust

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2013.08.007&domain=pdf
http://dx.doi.org/10.1016/j.apacoust.2013.08.007
mailto:Ning.CHU@lss.supelec.fr
http://dx.doi.org/10.1016/j.apacoust.2013.08.007
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust


them have to carefully select the regularization parameter, or
make necessary approximations on Singular Value Decomposition
(SVD). More recently, the Bayesian inference approaches [16–19]
have been investigated and achieve more robust and better acous-
tic imaging results. However, the Bayesian framework often causes
very time-consuming computation costs for real applications.

To summarize, all the above state-of-the-art methods have
excellent performance on their own applications, but there is no
one-fits-all methods; and most of them suffer one of the following
drawbacks: coarse spatial resolution, sensitivity to background
noises and high computational cost. In addition, most of them need
to set some important parameters for good performance.

In this article, our main contributions can be: (1) We firstly im-
prove the robust forward propagation model of acoustic power
propagation by considering both the background noises at the
microphone sensors, and the propagation uncertainty caused by
multi-path propagation in the wind tunnel. (2) We jointly estimate
source powers and positions, as well as the background noise
power. (3) For acoustic imaging with super-resolution, we investi-
gate an adaptive sparsity parameter estimation procedure. (4) Fur-
thermore, its computational cost maintains feasible to use.

This article is organized as follows: Section 2 introduces the for-
ward model of acoustic signal propagation. Then the improved
model of acoustic power propagation is proposed in Section 3.
The classical methods are presented in Section 4. Our proposed ap-
proach is investigated in Section 5. Then method comparisons are
shown on simulations in Section 6 and real data in Section 7. To
further confirm the effectiveness of proposed approach, Section 8
demonstrates the performance comparisons on the hybrid data,
in which, some known synthetic sources are added to the real data.
Finally, Section 9 concludes this article.

2. Forward model of acoustic signal propagation

2.1. Assumptions

For acoustic imaging, a source is usually supposed to be an
uncorrelated monopole [7–9,11,20–22]. In this article, we use the
monopole model in order to simplify the physical process and
explicitly build up the acoustic propagation model. To approach
real cases, we use the complex source model which is composed
of several monopoles forming different spatial patterns. Moreover,
we suppose the background noise at the microphone sensor to be
Additive Gaussian White Noise (AGWN), mutually independent
and identically distributed (i.i.d), and also independent to sources.
Sensors are assumed to be omni-directional with unitary gain. Fur-
thermore, complex reverberations are negligible in wind tunnel,
but we consider the first order reflection on the ground, as well
as the refraction on the interface between the wind flow and com-
mon air.

2.2. Acoustic signal propagation

Fig. 1 illustrates the acoustic signal propagation from the source
plane to the microphone sensor array in the wind tunnel, where
sensors are installed outside the wind flow. We consider M sensors
at known positions P ¼ ½p1; . . . ;pM �T with (�)T denotes transpose
operator. On the source plane, we suppose K unknown original
source signals s� ¼ s�1; . . . ; s�K

� �T at unknown positions
P� ¼ p�1; . . . ;p�K

� �T , where p�k denotes the 3D coordinates of s�k. Then
we discretize the source plane into N identical grids at known dis-
crete positions P = [p1, . . . , pN]T, where we assume that K original
sources sparsely distribute on these grids, supposing N > M� K
and P⁄ � P. Finally we get N discrete source signals s at known
positions P as:

s ¼ 0; . . . ; s�1;0; . . . ; s�k;0; . . . ; s�K ;0; . . .
� �T

N; ð1Þ

where s�k ¼ sn for p�k ¼ pn. Since K� N, thus s is a sparse signal with
K-sparsity in the spatial domain. Therefore, to reconstruct original
source signals s⁄ is transferred to reconstruct K-sparsity signals s.
To be clear, we state that s� ¼ s�1; . . . ; s�K

� �T denote the original source
signals, while s = [s1, . . . , sN]T denotes the (discrete) source signals.
In Eq. (1), source position p�k can be derived from the position pn,
where the source power of sn is not 0.

Based on the discrete source model in Eq. (1), we can give the
forward model of acoustic signal propagation. For the mth sensor
m 2 [1, . . . , M], received signals zi,m(t) are divided into I sampling
blocks with L samplings/block, with sampling block i 2 [1, . . .,I],
sampling time t 2 [(i � 1) L + 1, . . . , i L] and total samplings T = I L.
Since acoustic signals usually have wide-band frequencies, we ap-
ply the L-points Discrete Fourier Transform (DFT) in each sampling
block, so that we separate the wide-band into L narrow frequency
bins. Since the signal processing is made independently at each fre-
quency bin, we omit the frequency notation fl, l 2 [1, . . . , L] for sim-
plicity. Finally in the sampling block i, the measured signals
zi = [zi,1, . . . , zi,M]T at M senors can be modeled in the frequency do-
main as [20]:

zi ¼ AðPÞ si þ ei; ð2Þ

where si = [si,1, . . . , si,N]T denotes N source signals at the ith sampling
block. After DFT, si still maintains the sparsity in spatial domain;
and ei = [ei,1, . . . , ei,M]T denotes background noises at M sensors,
and we suppose ei 	 Nð0;r2Þ to be the i.i.d AGWN distribution,
where r2 ¼ E eH

i ei
� �

denotes the noise power, with E½�� denoting
expectation operator and (�)H conjugate transpose. M 
 N complex
matrix A(P) = [a(p1), . . . , a(pN)] denotes the signal propagation ma-
trix, where a(pn) denotes the steering vector for the source sn at the
position pn. As shown in Fig. 1, we can modify the classical defini-
tion [20] of a(pn) according to the ground reflection on the ground
as follows:

an ¼ adðpnÞ þ qarðp�nÞ; ð3Þ

where q denotes the reflection coefficient (0 6 q 6 1), whose value
mainly depends on ground conditions at a given frequency. For the
real data used in this article, q = 0.8 is supposed to be fixed over the
frequency band [1600,2600] Hz in the wind tunnel experiments,
thanks to the research contributions of Renault SAS [23].

Fig. 1. Illustration of acoustic propagation in the wind tunnel [19].
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