
A new efficient two-channel backward algorithm for speech
intelligibility enhancement: A subband approach

Mohamed Djendi ⇑, Rédha Bendoumia
University Saad Dahlab of Blida, Signal Processing and Image Laboratory (LATSI), Route de Soumaa, B.P. 270, Blida 09000, Algeria

a r t i c l e i n f o

Article history:
Received 12 May 2013
Received in revised form 13 August 2013
Accepted 14 August 2013
Available online 8 September 2013

Keywords:
Backward structures
LMS algorithm
Speech intelligibility
Noise reduction
Speech distortion
Subband technique

a b s t r a c t

This paper addresses the problem of speech intelligibility enhancement by adaptive filtering algorithms
employed with subband techniques. The two structures named the forward and backward blind source
separation structures are extensively used in the speech enhancement and source separation areas, and
largely studied in the literature with convolutive and non-convolutive mixtures. These two structures use
two-microphones to generate the convolutive/non-convolutive mixing signal, and provide at the outputs
the target and the jammer signal components. In this paper, we focus our interest on the backward struc-
ture employed to enhance the speech signal from a convolutive mixture. Furthermore, we propose a sub-
band implementation of this structure to improve its behavior with speech signal. The new proposed
subband-Backward BSS (SBBSS) structure allows a very important improvement of the convergence
speed of the adaptive filtering algorithms when the subband-number is selected high. In order to improve
the robustness of the proposed subband structure, we have adapted then applied a new criterion that
combines the System Mismatch and the Mean-Errors criterion minimization. The proposed subband
backward structure, when it is combined with this new criterion minimization, allows to enhance the
output speech signal by reducing the distortion and the noise components. The performance of the pro-
posed subband backward structure is validated through several objective criteria which are given and
described in this paper.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Significant progress has been made in both research and
product-related evolution of hands-free communication devices.
Promising applications of human–machine interfaces easing our
daily life and calling for natural voice interaction include, for exam-
ple, game stations, interactive television sets, humanoid robots,
smart homes, or smart phones. Consequently, the user habitually
desires to be free, desires to move freely and close-talking sensors
become intolerable. However, the use of distant-talking and cross-
talking sensors involves a decrease of the desired speech signal
quality. This distortion is originally caused by additive undesired
noise components. These noise components are resulting from
interfering point sources, such as competing speakers, and from
coherent and incoherent noise components which are emitted,
for example, by household appliances and environments. [1–5].

In noisy environments, acoustic reflections of both the desired
signal and other jammers extra-degrade the quality of the sensor
signals [6–8]. For noise reduction (NR) and speech enhancement

(SE) applications these impairments turn out to be a main chal-
lenge if they are non-stationary and irregular. However, and in or-
der to improve the robustness of SE and NR systems in such noisy
environments, we can procedure in two different approaches to
overcome this constrained problem: the first approach is based
on the identification then the adjustment of the acoustic model
of the NR and SE systems to allows to quantify then correct the
distortion caused by the environments (cross-talk, competing
speakers, reverberation and coherent and incoherent noise compo-
nents). In this way, we usually use adaptive techniques and algo-
rithms for the identification of the acoustic model of NR and SE
systems in single and multi-sensors approaches [9–13]. In the
second approach, we use techniques and methods to enhance the
desired signal and cancel the acoustic noise and unusual signal
components. A several one-, two-and multichannel sensors tech-
niques are proposed to deal with this problem. For example in
[14–17], several single and two-sensor techniques are proposed
to correct these distortions [18–20]. More advanced techniques
are then proposed recently in [21,22]. Furthermore, several algo-
rithms have been proposed, in combination with single, two-and
multichannel techniques for NR and SE applications, are recently
proposed as a new countermeasure for the presented problem
[23–26]. Recently, a particular consideration has been made for
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the two forward and backward blind source separation structures
to be applied to enhance corrupted speech signals and cancel the
acoustic noise components. Several works have dealt with these
two structures as in [27–30]. In order to improve the NR and SE
technique behavior with stationary and non-stationary noise com-
ponents, the subband approach has been largely used for single,
two-and multichannel implementation [31–34]. The subband
adaptive filtering is an important approach that is usually used
to overcome the problem of NR and SE techniques. The subband fil-
ter banks have been introduced in the area of NR and SE adaptive
filtering methods in order to improve the performance of time
domain adaptive filters. The main improvements brought by the
subband approach are the faster convergence speed and the reduc-
tion of computational complexity of the used techniques due to the
shorter adaptive filters in the filter bank subbands [35–37]. These
good subband approach features are due to the fact that the full-
band input signal is divided into a number of subband signals
[38,39]. The subband adaptive filtering technique leads to the
manipulation of each subband signal, and allows for each subband
to converge almost separately for various modes, and thus improv-
ing the overall convergence behavior [40,41].

In this paper, we propose a new efficient two-channel backward
blind source separation (SBBSS) algorithm which is implemented
in subbands. This new algorithm is proposed to reduce the noise
components and to enhance the speech signal when the observa-
tions are highly corrupted by the noise components. In the pro-
posed algorithm, the output signals are estimated in subbands,
whereas the coefficients of the two adaptive filters are explicitly
adapted in the fullband form. This adaptive control mechanism is
different compared with other classical subband BSS structures
(where each sub-filter is adapted separately). The experimental re-
sults show the superiority of the proposed SBBSS algorithm in
comparison with the fullband backward and the backward sym-
metric adaptive decorrelating (BSAD) ones.

This paper is organized and presented as follows: Section 2 de-
scribes the mixing process with two sources of speech and noise
signals. In Section 3, a full description of the backward structure
is presented. In Section 4, the BSAD algorithm is presented. The
proposed subband backward blind source separation (SBBSS) algo-
rithm and its full theoretical analysis are presented in Section 5
and its subsections. The simulations results of the proposed SBBSS
algorithm in comparison with its fullband versions and the BSAD
algorithm are presented in Section 6. Finally, we conclude our work
in Section 7.

2. Description of the mixing process

In the general case of a convolutive mixture model, we assume
that we have q source signals s(n) = bs1(n), s2(n), . . . , sq(n)c which
are real and statistically independent. These sources are convo-
luted with q impulse responses channels him(k) and generate X
sensors signals p(n) = [p1(n), p2(n), . . . , pX(n)]. This general mixing
model is given by the following Fig. 1. The relations between the
source signals and the observations are given by the following
relation [13]:

pmðnÞ ¼
Xq

i¼1

XM�1

j¼0

himðjÞsiðn� jÞ m ¼ 1;2; . . . X: ð1Þ

where X, q and M represent respectively, the number of sensors, the
number of sources and the impulse responses length.

In this paper we consider the particular case of two sources and
two sensors (X = q = 2). The convolutive mixture model of two
uncorrelated sources is shown in Fig. 2, where s(n) and b(n) are
the speech signal and the noise respectively.

From this Fig. 2, the two observed signals at the sensor outputs
of this model can be written as follows:

p1ðnÞ ¼
XM�1

k¼0

h11ðkÞsðn� kÞ þ
XM�1

k¼0

h21ðkÞbðn� kÞ ð2Þ

p2ðnÞ ¼
XM�1

k¼0

h22ðkÞbðn� kÞ þ
XM�1

k¼0

h12ðnÞsðn� kÞ ð3Þ

where h11(n) and h22(n) represent the direct acoustic path of each
direct channel separately, h12(n) and h21(n) represent the cross-cou-
pling effects between the channels. To simplify the problem of the
mixing signals, we consider h11(n) and h22(n) the Kronecker impulse
response, i.e. h11(n) = h22(n) = d(n) [5,13]. According to this assump-
tion and if the input signals are real, the two relations (2) and (3)
can be rewritten as follows:

p1ðnÞ ¼ sðnÞ þ
XM�1

k¼0

h21ðkÞbðn� kÞ ð4Þ

p2ðnÞ ¼ bðnÞ þ
XM�1

k¼0

h12ðkÞsðn� kÞ ð5Þ

3. Description of the Backward BSS structure

In this section, we present the backward blind source separa-
tion (BBSS) structure and we give its full formulation and optimal

Fig. 1. The convolutive mixture model, si(n) are the source signals, him are the
impulse response of the channels throughout the sources are transformed and
mixed, and pm(n) are the observed signals. (The index i and m are defined as follows
i = 1, 2, . . . , q and m = 1,2, . . . , X).

Fig. 2. The simplified mixture model, s(n) and b(n) are the speech signal and the
noise respectively. h11(n), h22(n), h12(n) and h21(n) represent the impulse responses
between the channels.
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