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The dynamic string motion, which displacement is unilaterally constrained by the rigid termination con-
dition of an arbitrary geometry has been simulated and analyzed. The treble strings of a grand piano usu-
ally terminate at a capo bar, which is situated above the strings. The apex of a V-shaped section of the
capo bar defines the end of the speaking length of the strings. A numerical calculation based on the trav-
eling wave solution is proposed for modeling the nonlinearity inducing interactions between the vibrat-
ing string and the contact condition at the point of string termination. It was shown that the lossless
string vibrates in two distinct vibration regimes. In the beginning the string starts to interact in a nonlin-
ear fashion with the rigid terminator, and the resulting string motion is aperiodic. Consequently, the
spectrum of the string motion depends on the amplitude of string vibrations, and its spectral structure
changes continuously with the passage of time. The duration of that vibration regime depends on the
geometry of the terminator. After some time of aperiodic vibration, the string vibrations settle in a peri-
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odic regime where the resulting spectrum remains constant.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Investigation of the boundary condition of vibrating string is a
very important problem in musical acoustics. It is well known that
the fundamental frequency of the string is strictly determined by
the type of the string termination. Usually the changing of the tone
caused by the curvature of the string support is negligible, but
there is a family of Japanese plucked stringed instruments (biwa
and shamisen), which sounding is strictly determined by the string
termination [1,2]. These lutes are equipped with a mechanism
called “sawari” (touch). The sawari is a contact surface of very lim-
ited size, located at the nut-side end of the string, to which the
string touches repeatedly, producing a unique timbre of the instru-
mental tone called the sawari tone.

There are other stringed instruments of Indian origin with a
similar bridge design, such as sitar, veena and tambura. The inter-
action of the string with a curved string support creates a peculiar
buzzing sound, which is markedly different from that of known
European plucked string instruments such as guitar and lute. The
geometry of the string terminations for the sitar, veena, and tam-
bura was considered by Raman [3]. Raman concluded that possible
explanation of the phenomena of the “missing modes” is the com-
plex interaction of the string with the bridge [4].

Much effort has been devoted to modeling the dynamics of a
vibrating string with a distributed unilateral constraint during
the past decades. This problem was considered by Schatzman [5],
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Burridge et al. [6], and Cabannes [7] who used the method of char-
acteristics, and assumed that the string does not lose energy when
it hits the obstacle. Krishnaswamy and Smith [8], Han and Gro-
senbaugh [9], and Taguti [10] used a finite difference method to
study the string interaction with the curved bridge. Vyasarayani
et al. [11] described the movement of the sitar string with a set
of partial differential equations. Rank and Kubin [12], Evangelista
and Eckerholm [13], and Siddiq [14] used a waveguide modeling
approach to study the plucked string vibration with nonlinear lim-
itation effects.

The present paper describes a physics-based model for simula-
tion of vibrations of piano string, which at one end has the ideal ri-
gid support, and its other end is terminated at a capo bar. The types
of the string support in the piano are different for the bass and tre-
ble notes. All the far ends of the piano strings are terminated at the
bass and treble bridges, which are rather complicated resonant
systems. The nearest ends of the bass and long treble strings begin
at the agraffe that can be considered as an absolutely rigid clamp
termination. However the treble strings of grand pianos start at
the capo bar - the rigid edge of the cast iron frame [15]. These
strings are bent around the capo bar, and their vibration tone de-
pends on the curvature of the capo bar V-shaped section. The same
type of the string support can be seen also on the guitar and some
other musical string instruments.

The aim of this paper is to show the influence of the contact
nonlinearity on the spectral structure of the piano string vibration.
A part of this analysis was presented in [16]. The study is divided
into two stages. Firstly, the mathematical modeling of the
hammer-string interaction enables prediction of the piano string
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motion [17,18]. Secondly, this knowledge is used for appropriate
simulation of interaction of the vibrating string with a capo bar.
The numerical simulation of the hammer-string interaction is
based on the physical models of a piano hammer described in
[19-21]. These models are based on the assumption that the wool-
len hammer felt is a microstructural material possessing history-
dependent properties. The elastic and hereditary parameters of
piano hammers were obtained experimentally using a special pia-
no hammer testing device that was developed and built in the
Institute of Cybernetics at Tallinn University of Technology [21].
In this paper a number of simplifying assumptions regarding
the string and string support are introduced. Thus, the piano string
is assumed to be an ideal flexible string, the coupling of strings at
the end supports is neglected, and the bridge motion is ignored.
We also assume that the right string termination (bridge) is the
ideal rigid support. The left string termination (capo bar, sawari)
is considered here as a rigid but not an ideal support, because we
take into account the curvature of its V-shaped section. Neverthe-
less, we hope that the application of the proposed model will clar-
ify the physics of vibration of the string with nonlinear support.

2. First stage. String with ideal rigid support
2.1. Piano string model

It is assumed that the piano string is an ideal (flexible) string.
The transverse displacement y(x,t) of such a string obeys wave
equation
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Like in [17,18], we have the system of equations describing the
hammer-string interaction
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where function g(t) is the form of outgoing wave created by the
hammer strike at the contact point x =1, c is the speed of a nondis-
persive wave traveling along the string; F(t) is the acting force, T is
the string tension; m, z(t), and V are the hammer mass, the hammer
displacement, and the hammer velocity, respectively. The hammer
felt compression is defined by u(t) = z(t) — y(I,t). Function y(l,t) de-
scribes the string transverse displacement at the contact point
x =1, and is given by [18]
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Here we suppose that the string of length L extends from x =0 on
the left to x = L. Parameter a = [/L is the fractional length of the string
to the striking point, and b =1 — a. Parameter a determines the ac-
tual distance [ of the striking point from the nearest string end. The
initial conditions at the moment when the hammer first contacts
the string, are taken as g(0) = z(0) = 0, and dz(0)/dt = V.

The physical interpretation of Eq. (4) is simple enough. It de-
scribes the deflection of the string at the contact point that is
determined by the traveling waves moving in both directions along
the string and reflecting back from the string supports. Here the in-
dex of summation i simply denotes the number of reflections.

2.2. Piano hammer model

The experimental testing of piano hammers demonstrates that
all hammers have a hysteretic type of force-compression charac-
teristics. A main feature of hammers is that the slope of the
force-compression characteristics is strongly dependent on the
rate of loading. It was shown that nonlinear hysteretic models
can describe the dynamic behavior of the hammer felt [19-21].
These models are based on assumption that the hammer felt made
of wool is a microstructural material possessing history-dependent
properties. Such a physical substance is called either a hereditary
material or a material with memory.

According to a three-parameter hereditary model of the ham-
mer presented in [20], the nonlinear force F(t) exerted by the ham-
mer is related to the felt compression u(t) by the following
expression
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Here the parameter Qo is the static hammer stiffness; p is the com-
pliance nonlinearity exponent, and o« is the retarded time
parameter.

The continuous variations in hammer parameters across the
compass of the piano were obtained experimentally by measuring
a whole hammer set of recently produced unvoiced Abel hammers.
The result of those experiments is presented in [20,21]. A best
match to the whole set of hammers 1 < n < 88 was approximated
using

Qo= 183exp(0.045n), (6)
p=3.7+0.015n, (7)

%=259.5+0.58n+6.6-10%n>-1.25-103n>+1.172-10°n*. (8)

Here the unit for parameter « is ms, and the unit for Qg is N/mm®.
The hammer masses of this set were approximated by

m=11.074 - 0.074n+10*n%>, 1< n<88. 9)

The mass of hammer 1 (Ag) is 11.0 g, and the mass of hammer
88 (Cs) 5.3 g.

2.3. Numerical simulation for tone A;

The hammer-string interaction is simulated by solving the sys-
tem of Egs. (2, 3) for various initial hammer velocities. We chose
for calculations the note number n =85 (tone A;, frequency f =
3520 Hz). The string parameters are the following: the string
length L =61 mm; the actual distance of the striking point from
nearest string end [ = 2.6 mm; the linear mass density of the string
u=42g/m; the string mass M=0.26g; the string tension
T=7746N.

For tone A; in grand pianos there are three strings per note, the
acting mass of a hammer defined by relation (9) for n =85 is cho-
sen equal to 1/3 of the total hammer mass, and thus m = 1.8 g. For
the hammer 85 we use the following additional parameters: static
stiffness Qg =8387.4 N/mm”; nonlinearity exponent p=4.975;
hereditary parameter o = 0.5312 ms.

As a result of simulation of a hammer-string interaction we can
find the history of the acting force F(t) and the time dependence of
the outgoing wave g(t) created by the hammer strike, which are
shown in Fig. 1.

At the moment t = ty, which is defined as the duration of con-
tact, the hammer has lost the contact with the string. After this
moment the acting force F(t)=0 for any time t>t,. Therefore,
according to Eq. (3), the outgoing wave g(t) = const for the mo-
ments t > to.
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