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a b s t r a c t

Changes in weather have a major influence on driving safety. On wet pavement, tyre grip is reduced and
drivers must adapt their driving style accordingly. The correct operation of this adaptation mechanism
depends on the perception the driver has of the asphalt status. Due to certain effects, this perception does
not always correspond with reality. To improve this perception, it is essential to inform the driver about
the asphalt status, efficiently and as quickly as possible. This could be achieved by installing an asphalt
status detection system on the vehicle itself. The system could display asphalt status information in the
vehicle’s console, allowing drivers to adapt their driving style accordingly.

In this paper we propose an asphalt status classification system based on real-time acoustic analysis of
tyre/road noise. The proposed system uses a practical approach that allows it to be integrated into a real
vehicle. We present the system architecture used to measure the noise and the signal processing algo-
rithms used for the classification of the asphalt state. A practical implementation of the proposed system
has been developed and tested. For this preliminary prototype, only wet and dry asphalt states have been
covered. Obtained wet/dry classification results have been reported, showing very high success rates.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Weather changes and accident risk

Changes in the state of the asphalt due to adverse weather neg-
atively affect driving safety. Wet pavement reduces tyre grip, and
accumulated water can cause aquaplaning, leading to a complete
loss of vehicle control. It has been estimated that during rainfall,
accident rates increase by 70% [1]. On icy or snowy asphalt, there
is also risk of losing control of the vehicle due to slippery pavement
condition. Some studies have estimated that the risk of injury acci-
dents is 9 times greater on snowy roads and 20 times on icy roads
[2,3]. Usually the snowy asphalt is easily detectable by the driver,
but there are situations where ice is not readily visible, particularly
when forming a thin and almost transparent layer, known as black
ice. Black ice is also very slippery, making it very dangerous. A Finn-
ish study found that only 14% of drivers were able to detect slip-
pery pavement conditions [4]. Other studies have found that
drivers are not good at adjusting the speed of their vehicle to the
prevailing road conditions, even if the hazard (e.g. snow) is clearly
visible [5,6].

Another phenomenon that makes difficult the driver adaptation
to adverse asphalt condition is known as anchoring [7], which

refers to the difficulty that humans have to change an initial
hypothesis even with the succession of later evidences against it.
This makes adaptation to slippery pavement conditions difficult,
especially when these conditions change during driving (for exam-
ple due to changes in ambient temperature).

It is therefore important to inform the driver about the road sta-
tus. The most traditional method involves the placement of fixed
signals in geographic locations of risk (such as in bridges where
air currents favor the formation of black ice). Unfortunately fixed
warning signals have shown a very low or even null influence in
driving speed [8,9]. A more effective method consists in using Var-
iable Message Signs (VMS) [10–12].

The driver does not only need to be informed, the information
must be delivered as quickly as possible. It has been estimated that
when a road becomes slippery, accident risk during the hour pre-
ceding maintenance actions is 12 times as high as 12 h earlier. Dur-
ing this high risk hour, road condition is usually known by Traffic
Management Centres (TMC), but information takes some time to
reach the driver, and most accidents occur during this interval [13].

Due to these factors, it appears highly advisable to have an on-
board system that provides information about the state of the road
in a reliable manner and in real-time. This way, drivers can always
be informed about adverse pavement status conditions, and can
adapt their driving style accordingly, reducing accident risk. In pre-
vious studies [12], it has been stated that a more sophisticated sys-
tem to recognize adverse weather and road conditions and low friction
is needed.
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1.2. State of the art

Automatic detection of weather condition of the asphalt has al-
ready been addressed with different perspectives and results. One
approach uses a microphone installed at a fixed road location, to
record the generated noise of the vehicles passing by [14–16]. Re-
corded noise, segmented in 5-min blocks, is pre-processed and
analyzed using principal component analysis or neural networks,
to estimate pavement status. Using this method, researchers have
got high estimation accuracy, around 80% in most cases. This meth-
od could be used to implement fixed variable message signs, but is
not suitable for integration into a vehicle.

Another approach uses 24-GHz automotive radar technology for
detecting low-friction spots caused by water, ice, or snow on asphalt
[17]. Laboratory and field experiments show interesting results. Ra-
dar technology used in this approach is very similar to the one used
in speed control (usually operating in the 22–24 GHz range). To
adapt one of these units, significant modifications must be made,
including adding a dual-polarized antenna with a switch in the
transmitter, the receiver or both. If the radar must be used for both
speed control and road condition recognition, a switchable antenna
is required such that the radar beam can be switched between the
road surface and the direction of motion of the vehicle.

Other approaches that can be integrated in a vehicle, use image
processing to distinguish the condition of the asphalt. Yamada
et al. [18] tried to detect the wet/dry road condition using a stan-
dard video camera installed at the rear of the vehicle, trying to get
the polarization of the image. Another more complex study in this
line was carried out in the IcOR project, which has developed a pro-
totype system that can detect the road condition (dry/wet/ice/
snow), using two cameras mounted on top of the vehicle [19].
These cameras detect changes in polarization of light reflected on
the asphalt surface, achieving a very high success rate for the con-
dition of asphalt ice (up to 90%) but with much poorer results for
the other cases. Other drawbacks of this method are that it is very
expensive and requires a complex installation.

1.3. Objectives

The goal is to be able to detect road weather condition using a
cheap and easy to install on-board system, achieving also a high
success rate. The system should be able to detect dry, wet, icy
and snowy conditions, but in a first approach, only dry and wet
states are considered. The proposed system is based on the analysis
of the tyre/road noise, in a similar approach to the one taken by
Kongrattanaprasert et al. [15]. However, the system is designed
to be mounted on-board, and the audio analysis approach is com-
pletely different.

2. Methodology

The system is based on the principle that the acoustic footprint
of the tyre/road noise generated by the tyre/road interaction, dif-
fers depending on the road surface status. The noise generated
when driving on a dry surface will be different to the one gener-
ated when driving on the same surface, if it is wet, icy or snowy.
Tyre/road noise is well known when driving on dry roads. It has
a very characteristic profile with a prominent peak around 1 kHz
[20]. There is a lot less information about tyre/road noise on wet,
dry and icy roads, but there is some work confirming the variation
on the acoustic footprint [15,21]. As the acoustic footprints are dif-
ferent for each road status, it should be possible to know the road
status by analyzing the tyre/road noise.

Fig. 1 shows the blocks comprising the proposed system. During
driving, generated noise due to the tyre/road interaction is

captured with a microphone. The signal generated by the micro-
phone is adapted and amplified by the Signal Conditioning block.
The A/D conversion block converts it from analogic to digital. The
Feature extraction block pre-processes the audio signal and extracts
its features, providing the feature vector to the Support Vector Ma-
chine (SVM) Classifier. The SVM classifier uses the pre-calculated
Support Vectors and the feature vector to run a classification algo-
rithm and outputs the estimated class. The final result is output
by the Spurious events filter block. It filters the results from the
SVM blocks, to avoid wrong classifications produced by glitches
on the input signal. The SVM is a supervised learning based classi-
fier. To obtain the Support Vectors and to select the relevant fea-
tures, the system must be trained first.

2.1. Training, feature extraction and feature selection

Support Vector Machines are learning machines. Before the
SVM is used as a classifier, it has to be trained. In Fig. 1, blocks in
dashed lines need to be implemented only during the training
stage, and do not need to be deployed in the final system. The
training stage serves two purposes:

1. Selecting the relevant features of the signal.
2. Computing the support vectors.

One of the most important tasks when implementing a pattern
recognizer is to correctly extract and select the features fed to the
classifier. It is advisable to keep the dimensionality of the feature
vector as low as possible. Keeping the dimensionality of the feature
vector low, usually enhances generalization performance. It also
reduces memory footprint and CPU power required by the classi-
fier. In this system, features contain the frequency components of
the acoustic input signal. The Feature extraction block, groups the
audio samples into chunks of the same duration. Each of these
chunks is processed by a 1/3 octave filter bank. Calculated fre-
quency bands are normalized and overall sound pressure level is
discarded by the feature extraction block. Keeping the overall
sound pressure level as a separate feature is not needed, because
the acoustic footprint generated by the tyre/road interaction is
contained in the relative variations of the frequency components
of the signal. Signal normalization has the additional benefit of
making the system immune to microphone sensitivity deviations
due to temperature, humidity, ageing, etc.

While training the system, the feature vector comprises all the
1/3 octave bands in the frequency range from 20 Hz to 20 kHz. The
feature vector is output to the Feature selection block, along with
the class corresponding to the feature vector. This block runs in
parallel two algorithms on the feature vector: Recursive Feature
Elimination (RFE) [22] and zero-norm minimization (L0) [23].
RFE algorithm tries to choose the features leading to the largest
margin class separation by using a SVM classifier. The algorithm
runs several iterations. At each iteration, the input dimension that
decreases the margin the least is removed. L0 algorithm selects a
feature subset that minimizes the zero-norm of the weight vector
of the classifier. This poses a NP-hard problem, so the approxima-
tion method proposed by Weston et al. [23] has been used.

Once the relevant features have been selected, the process is re-
peated, but the feature vector is trimmed down to the selected fea-
tures, and it’s handed over to the SVM training block, along with the
class corresponding to the feature vector. This block trains the
SVM, computing the support vectors. Resulting support vectors
data is stored in the Support Vectors block.

Once the training stage has finished, the system can start work-
ing in the normal (classifier) mode. In normal mode, only 1/3 oc-
tave bands selected during the training stage are computed and
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