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Abstract The Radial Basis Function (RBF) method with data reduction is an effective way to per-

form mesh deformation. However, for large deformations on meshes of complex aerodynamic con-

figurations, the efficiency of the RBF mesh deformation method still needs to be further improved

to fulfill the demand of practical application. To achieve this goal, a multistep RBF method based

on a multilevel subspace RBF algorithm is presented to further improve the efficiency of the mesh

deformation method in this research. A whole deformation is divided into a series of steps, and the

supporting radius is adjusted in accordance with the maximal displacement error. Furthermore,

parallel computing is applied to the interpolation to enhance the efficiency. Typical deformation

problems of the NASA Common Research Model (CRM) configuration, the DLR-F6 wing-

body-nacelle-pylon configuration, and the DLR-F11 high-lift configuration are tested to verify

the feasibility of this method. Test results show that the presented multistep RBF mesh deformation

method is efficient and robust in dealing with large deformation problems over complex geometries.
� 2018 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

17

18 1. Introduction

19 Mesh deformation is commonly involved in CFD simulations
20 that have geometric boundary variations. Typical cases of
21 these problems are aeroelastic1,2 and aerodynamic shape opti-
22 mization.3,4 In these cases, adjustments should be made to a
23 computational mesh according to the deformation of the wall

24boundary at each physical time step or design loop. For com-
25plex 3D configurations whose mesh nodes could amount to
26hundreds of millions, it is considerably time-consuming to
27deform a computational mesh at each step or design loop. Fur-
28thermore, mesh quality is crucial to the stability and accuracy
29of CFD simulations. It is important to develop a qualified
30mesh deformation method with high efficiency, excellent
31robustness, and ability to preserve mesh quality. At present,
32a variety of mesh deformation schemes have been introduced
33depending on the mesh topology and the specific application
34in literature. Based on the deforming structure, strategies for
35mesh deformation can be categorized into two classes: physical
36analogy and interpolation.5

37Physical analogy methods, usually provided with connectiv-
38ity information of a computational mesh, use physical models
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39 to determine the positions of internal nodes conform to
40 boundary motions. The spring analogy6–8 is one of the most
41 widely used methods in this category, which models the con-
42 nections between grid nodes as springs. Hence, the new posi-
43 tions of the nodes are determined by solving static
44 equilibrium equations. However, this method lacks efficiency,
45 and the mesh quality is difficult to be preserved when undergo-
46 ing large deformation. The Finite Element Analogy (FEA)9,10,
47 viewed as an extension of the spring analogy, assumes that
48 each mesh node is connected to its neighbors by elastic solids.
49 This kind of method is robust and accurate but time-
50 consuming owing to the costs of solving large-scale control
51 equations.
52 Differing from the aforementioned class, interpolation
53 methods have wider applicability and computational efficiency
54 because connectivity information is not required.11 The Trans-
55 Finite Interpolation (TFI) method12,13 generates inner grids by
56 implementing transfinite interpolation along mesh lines with
57 the motion of the surface boundary. This method is efficient
58 but limited to be merely applied to structured mesh topologies,
59 and will result in crossover of the mesh. Huang et al.14 pro-
60 posed a ‘‘layering blend deformation” technique based on
61 the basis quaternion technique, which combines the layering
62 arithmetic with TFI technique. This method is able to deal
63 with problems with large deformations. Delaunay graph map-
64 ping method15 generates a Delaunay graph of the solution
65 domain whose grid motion can be obtained according to the
66 boundary motion based on the one to one mapping between
67 the Delaunay graph and the computational grid. This method
68 is of high efficiency except that the mesh quality is tough to
69 preserve in occurrence of large boundary deformation.
70 Since it was firstly applied by Boer et al.16 to mesh deforma-
71 tion, the Radial Basis Functions (RBF) interpolation algo-
72 rithm has raised considerable concern due to its adaptation
73 (suitable for both structured and unstructured mesh topolo-
74 gies), capabilities of operating on multivariate data set (no
75 connectivity relationship required), and maintenance of mesh
76 quality (mesh topology will be preserved). The major factor
77 which influences the efficiency of RBF interpolation is the
78 number of control points. The greedy method was applied
79 by Rendall and Allen17, which reduces the dimensions of the
80 basis matrix by intelligently selecting a subset of surface points
81 as control points based on the displacement error. The prob-
82 lem here is that only the selected points are moved to the exact
83 place while the others are moved by the global interpolation.
84 As a result, a correction process needs to be carried out to
85 ensure the accuracy of the geometry. Kedward et al.18 devel-
86 oped a multiscale RBF mesh deformation method which cap-
87 tures global and local motions using all the surface points. This
88 method does not need a second correction progress, and the
89 sparsity introduced can be exploited. Niu et al.19 proposed a
90 novel Dynamic-Control-Point RBF (DCP-RBF) mesh defor-
91 mation algorithm, which employs a dynamic set of control
92 points to perform large mesh deformations with a quite small
93 increase in the computational expense. RBF interpolation has
94 been combined with some other mesh deformation algorithms.
95 For example, Qin et al. combined the Delaunay graph scheme
96 with RBF interpolation.11 RBF interpolation is applied to
97 each Delaunay graph sub-domain using vertices as control
98 points, thus reducing the size of the interpolation matrix. This
99 method combines merits from both the efficiency of the Delau-
100 nay graph mapping mesh deformation method and the better

101control of quality of grids close to the surface from the RBF
102method. Liu et al.20 presented an RBFs-MSA method, which
103combines the benefits of the moving-submesh approach with
104the RBF interpolation method.
105In authors’ previous work, a ‘double-edge’ greedy support-
106ing point selection algorithm using a multi-level subspace
107method21 was adopted to reduce computational consumption.
108This method is efficient and robust in dealing with large defor-
109mations. However, it has been proven that the efficiency of this
110method tends to decline over time when dealing with complex
111mesh deformation problems.
112In this work, a multistep RBF interpolation algorithm is
113presented to further ease the computational cost based on
114the multi-level subspace method. Differing from the previous
115method, the entire deformation process is viewed as consisting
116of hierarchical deformations, which is automatically parti-
117tioned. Since the coordinates of all the mesh nodes can be
118shared by all the processors, the back substitution procedure
119of surface and volume nodes displacements can be carried
120out in parallel to save the computational cost. Three test cases
121as representatives of dynamic mesh applications are presented
122to demonstrate the superiority of this method.

1232. Multistep mesh deformation method

124The term RBF refers to a series of functions with the general
125form written as:
126

/ ¼ /ðkdkÞ ð1Þ 128128

129where kdk denotes the Euclidean distance, which means that
130the basic variable of RBF interpolation is the spatial distance
131between the nodes. The interpolation function fðrÞ; represent-
132ing the displacements of the mesh nodes, can be approximated
133by a weighted sum of basis functions:
134

fðrÞ ¼
XN
i¼1

wi/ðkr� rikÞ ð2Þ
136136

137where the index i identifies the supporting center of RBFs,
138which is located on the moving surface. r is the position vector
139of the unknown mesh node. wi is the weight coefficient corre-
140sponding to the ith radial basis function. /ðkr� rikÞ is the gen-
141eral form of the adopted radial basis function. N is the number
142of volume nodes involved in the interpolation.
143Basis functions can be categorized as global, local, and
144compact.17 Boer et al.16 has made a comparison between dif-
145ferent functions. In this work, Wendland C2 function22,23 is
146selected as the basis function because of its satisfactory perfor-
147mance, which is:
148

/ðgÞ ¼ ð1� gÞ4ð4gþ 1Þ 0 6 g < 1

0 g P 1

(
ð3Þ

150150

151where g ¼ kr�rik
R

with R denoting the supporting radius of RBF

152series. Practice indicates that an appropriate supporting radius
153is of significant importance for this interpolation method. On
154one hand, a larger value of the supporting radius R will lead
155to a better scatter of the deformation away from the boundary
156but make the matrix dense. On the other hand, a lower value
157may generate unsmooth deformation but save the computa-
158tional costs. The interpolation problem of the surface deforma-
159tion is described in the following matrix expressions:
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