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Abstract Gas Turbine Engines (GTEs) are vastly used for generation of mechanical power in a

wide range of applications from airplane propulsion systems to stationary power plants. The gas-

path components of a GTE are exposed to harsh operating and ambient conditions, leading to sev-

eral degradation mechanisms. Because GTE components are mostly inaccessible for direct measure-

ments and their degradation levels must be inferred from the measurements of accessible

parameters, it is a challenge to acquire reliable information on the degradation conditions of the

parts in different fault modes. In this work, a data-driven fault detection and degradation estima-

tion scheme is developed for GTE diagnostics based on an Adaptive Neuro-Fuzzy Inference System

(ANFIS). To verify the performance and accuracy of the developed diagnostic framework on GTE

data, an ensemble of measurable gas path parameters has been generated by a high-fidelity GTE

model under (a) diverse ambient conditions and control settings, (b) every possible combination

of degradation symptoms, and (c) a broad range of signal to noise ratios. The results prove the com-

petency of the developed framework in fault diagnostics and reveal the sensitivity of diagnostic

results to measurement noise for different degradation symptoms.
� 2017 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

21

221. Introduction

23Components of Gas Turbine Engines (GTEs) operate in harsh
24environments that create different degradation mechanisms in
25the parts. The degradation mechanisms lead to growth of
26faults in various modes and result in deviation of the perfor-
27mance from that of the brand-new condition. In the compres-
28sor section, erosion of the blades and vanes and the fouling
29phenomena lead to loss of the isentropic efficiency and
30decrease of the mass flow capacity, given the shaft speed and
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31 the pressure ratio.1 In the turbine section, however, the mass
32 flow capacity would increase, while the isentropic efficiency
33 declines with degradation for a given pressure ratio and shaft
34 speed.2,3 It is a common practice to utilize the symptoms of
35 the isentropic efficiency’s decline and the mass flow capacity’s
36 change to quantify the degradation level in both compressors
37 and turbines.4,5 Degradation of the parts moves the operating
38 match point of GTE subsystems away from the optimal crite-
39 ria and results in deviation of gas path parameters from those
40 of a healthy condition. At the same time, it leads to loss of the
41 thermal efficiency and extra fuel consumption at the system
42 level.6 Deterioration of the GTE performance is not necessar-
43 ily rooted in part degradation. When the ambient condition
44 changes or the GTE is operated at off-design control settings,
45 e.g., partial load, the performance of the GTE will deteriorate.
46 Such deteriorations automatically reverse when the operating
47 conditions return to on-design conditions 7. It is critical for
48 a GTE diagnosis system to separate the deterioration causes
49 and to isolate those attributable to degradation of the compo-
50 nents but not off-design control settings.
51 Condition-based health management strategies tend to
52 extract real-time health-related information from systems so
53 that the required maintenance actions can be taken at the right
54 time for the right part(s). GTE measurements of gas-path
55 parameters contain valuable information on the health condi-
56 tions of the parts; however, the number of operating parame-
57 ters recorded with a GTE performance monitoring system is
58 limited by the cost, maintenance, and other technical reasons.
59 In many conventional GTEs used for power generation, mea-
60 surements are limited to a few parameters such as power, shaft
61 speed, EGT, and fuel flow. As a result, extraction of informa-
62 tion from data analysis becomes challenging. At the same time,
63 small variations of the measurements due to component faults
64 can be masked by signal noise, if the measurement noise is rel-
65 atively high. This calls for competent health monitoring and

66diagnostic techniques that manage to extract health informa-
67tion from limited measurements contaminated with noise.
68There are two main approaches for fault diagnostics: sys-
69tem identification and pattern recognition.8 In system identifi-
70cation where a measurement model for a system is required,
71the objective is to update internal fault-related parameters of
72the system model so that model outputs become consistent
73with measurements. It requires a reliable measurement model
74for the system that establishes functional relationships between
75internal health parameters and measurements.9 Pattern recog-
76nition is a practical computational approach that can be
77applied effectively if an accurate measurement model is not
78available. Variations of the internal health parameters of gas
79turbines create distinct clusters in the multi-dimensional space
80of measurable operating data. The task of pattern recognition
81is to classify those clusters and attribute them to the corre-
82sponding faults.10 Fig. 1 shows the process of GTE fault detec-
83tion through pattern recognition in a multi-dimensional
84measurement data space, where x represents the health condi-
85tion of the system and y, u and v refer to the performance
86parameters, control inputs and ambient conditions respec-
87tively. The dimensions are limited in this case to three for
88improved visualization. This is an effective approach for fault
89detection and isolation in GTEs with a limited number of mea-
90surable parameters. Mathematically, pattern recognition algo-
91rithms are mapping functions, which need a training process to
92set their internal parameters. After the training process, upon
93receiving a new set of measurements, the classification function
94maps the inputs to the corresponding classes of faults. Various
95classification techniques including fuzzy-logic,11–13 probabilis-
96tic networks,14,15 artificial neural networks,16,17 support vector
97machines,18 stochastic neuro-fuzzy inference systems,19 and
98statistical-based approaches20 have been utilized for GTE
99diagnosis by pattern recognition. In a comparative study, Bet-
100tocchi et al. showed that under measurement uncertainty, an

Nomenclature

Symbols
ANFIS adaptive neuro-fuzzy inference system

ANN artificial neural network
APU auxiliary power unit
D(�) diagnostic model

e diagnostic error
EGT exhaust gas temperature
GTE gas turbine engine

G(_s) measurement model
N shaft speed
NRMSE normalized root mean squared error
P pressure

PW power
R linear fuzzy rules
s measurement signal

SNR signal to noise ratio
T temperature
u control input

v ambient condition

W mass flow

w weight of fuzzy rules
x health state
y performance parameter
g isentropic efficiency

q degradation symptom
r standard deviation of noise
/ relative humidity

Subscripts
A actual value
am ambient
C compressor

F fuel
i inlet
M measured parameter

o outlet
T turbine
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