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Abstract Lithium-ion batteries have become the third-generation space batteries and are widely

utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft

as the battery is a critical part and determines the lifetime and reliability. The Relevance Vector

Machine (RVM) is a data-driven algorithm used to estimate a battery’s RUL due to its sparse fea-

ture and uncertainty management capability. Especially, some of the regressive cases indicate that

the RVM can obtain a better short-term prediction performance rather than long-term prediction.

As a nonlinear kernel learning algorithm, the coefficient matrix and relevance vectors are fixed once

the RVM training is conducted. Moreover, the RVM can be simply influenced by the noise with the

training data. Thus, this work proposes an iterative updated approach to improve the long-term

prediction performance for a battery’s RUL prediction. Firstly, when a new estimator is output

by the RVM, the Kalman filter is applied to optimize this estimator with a physical degradation

model. Then, this optimized estimator is added into the training set as an on-line sample, the

RVM model is re-trained, and the coefficient matrix and relevance vectors can be dynamically

adjusted to make next iterative prediction. Experimental results with a commercial battery test data

set and a satellite battery data set both indicate that the proposed method can achieve a better per-

formance for RUL estimation.
� 2017 Published by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).

20

211. Introduction

22Since a lithium-ion battery was firstly used in a United King-
23dom satellite called STRV-1d, it has been widely used in many
24spacecraft including satellites and deep-space detectors. A sig-
25nificant improvement on satellites’ total weight reduction is
26achieved with the huge advantages of gravimetric energy den-
27sity and volumetric energy density. Lithium-ion batteries have
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28 become the third generation of aerospace application power
29 storage batteries.1

30 As one of the most critical component, a lithium-ion bat-
31 tery is an inevitable sub-system of a spacecraft.2 The battery
32 energy storage not only is the solitary power source while a
33 spacecraft operating in a shadow phase, but also provides
34 extra peak power while some high-power payloads working
35 or changing the running orbit. Accurate Remaining Useful
36 Life (RUL) estimation can help realizing the condition-based
37 maintenance schedule and optimizing the task schedule. This
38 is also essential for future autonomous maintenance and
39 autonomous health management. In addition, with the high
40 requirement of the spacecraft long lifetime, i.e., 8–10 years
41 for low-earth orbit satellites, battery RUL estimation can pro-
42 vide more decision-making information for a ground reliability
43 assessment. In particular, for those low-cost and long-lifetime
44 space applications or urgent launching missions, a sufficient
45 on-ground degradation or lifetime test is not permitted.
46 Besides aerospace applications, lithium-ion batteries have
47 become a crucial part for almost all industrial systems. Perfor-
48 mance degradation identification, capacity fade modeling, and
49 RUL estimation have drawn much attention in reliability engi-
50 neering. Especially, lithium-ion battery RUL estimation has
51 become a research hotspot in the field of Prognostics and
52 Health Management (PHM).
53 The approaches for lithium-ion battery RUL estimation
54 can mainly be classified into two categories: model-based
55 and data-driven methods. Model-based methods are generally
56 achieved by building physical degradation models describing
57 lithium-ion battery inner electrochemical reactions. Although
58 complex models can always reveal how irreversible processes
59 impact the performance degradation, model-based methods
60 always involve too many parameters to represent complicated
61 failure mechanisms properly. Furthermore, since a lithium-ion
62 battery is a kind of dynamic nonlinear system, parameters are
63 not consistent under different operating conditions and work-
64 ing loads, which makes it more difficult to identify the param-
65 eters. On the other hand, some electrochemical features, i.e.,
66 Solid Electrolyte Interphase (SEI),3 Electrochemical Impe-
67 dance Spectrum (EIS),4 etc., can only be measured under strict
68 conditions and by high-cost instruments. These testing
69 approaches cannot satisfy the real applications. Thus, for
70 RUL estimation approaches used on spacecraft, it is difficult
71 to find proper dynamic parameters to match the special in-
72 orbit operating conditions for model-based methods.
73 Data-driven methods estimate the RUL based on historical
74 data and monitoring data. Many data-driven methods have
75 already been applied in battery RUL estimation. Liu et al.5

76 optimized an AutoRegressive (AR) model by combining a
77 nonlinear degradation function to estimate the battery RUL.
78 Liu et al.6 utilized Artificial Neural Networks (ANNs) whose
79 network weights are adaptively optimized using the Recursive
80 Levenberg–Marquardt (RLM) method to predict RUL. Lu
81 et al.7 proposed a geometrical approach to model the li-ion
82 battery capacity, and four geometrical features were utilized
83 to present the slight changes in the performance degradation.
84 Xing et al.8 fused an empirical exponential and a polynomial
85 regression model to predict the remaining useful performance
86 of lithium-ion batteries. Yan et al.9 introduced an LS-FDP
87 framework for prognosis, and Lebesgue Sampling (LS) was
88 applied for ‘‘execution only when necessary”. Some other
89 data-driven methods, such as the Naı̈ve Bayes (NB) model,10

90the Markov Chain Mote Carlo approach,11 the Support Vec-
91tor Machine (SVM),12,13 the Particle Filter (PF),14–17 Gaussian
92Process Regression (GPR)18, etc., are all widely used in battery
93RUL estimation. The Relevance Vector Machine (RVM) algo-
94rithm is also adopted in battery RUL prediction with high
95learning capability and easy training process.19 The RVM rep-
96resents a generalized linear model under the Bayesian frame-
97work,20 so it can provide uncertainty management ability
98which is valuable for lithium-ion battery health management.21

99Saha et al.22 firstly attempted to use the RVM in battery
100prognostics, in which the RVM-PF approach provided the
101uncertainty presentation with a probability density function.
102Wang et al.23 applied the RVM to acquire relevance vectors
103to indicate the battery capacity fading and cycle life. A
104three-parameter conditional capacity degradation model was
105established at the same time. Widodo et al.24 proposed a bat-
106tery health assessment framework based on a sample entropy
107of the discharge voltage. The RVM algorithm was used to pre-
108dict the RUL and provide the uncertainty presentation. Li
109et al.25 developed a multistep-ahead prediction model based
110on the mean entropy and the RVM was applied for the State
111of Health (SoH) and RUL prediction. Liu et al. 15 optimized
112the RVM with an incremental learning strategy to satisfy the
113requirements of dynamic training and on-line learning capabil-
114ities. Zhang et al.26 weakened the noise during a battery test by
115using wavelet and estimated the RUL with the RVM opti-
116mized by differential evolution. Hu et al.27 used the RVM to
117learn the relationship between the capacity and its charge-
118related features. An RVM regression model trained offline
119was used to infer the unknown capacity from a set of
120charge-related characteristics.
121As mentioned above, the RVM has been widely used in
122lithium-ion battery RUL estimation. However, its poor perfor-
123mance of long-term prediction is the challenging issue that has
124limited its applications.28 The statistical filtering algorithm is
125also applied to estimate battery RUL, but in real applications,
126the measurement equation is hard to determine owing to the
127dynamic feature of a lithium-ion battery. A fusion framework
128is proposed in this paper to solve the above two bottlenecks.
129Single-step prediction is conducted once the RVM model be
130trained. The predicted estimator is considered as the measure-
131ment value in the Kalman Filter (KF). The estimator is opti-
132mized and the uncertainty involved is filtered by a state-
133space equation. The training data set is extended with this opti-
134mized observer, and the model is retrained with this updated
135training data set. The main contribution in this paper can be
136summarized as follows: (A) to improve the poor performance
137of long-term prediction, we propose an iterative updated
138method for the RVM. The training data set is updated when
139the prediction value is optimized by the KF. Then the model
140is re-trained to obtain new relevance vectors and coefficient
141matrix. The capacity for next cycle is predicted after the
142update; (B) a data-driven method is applied as the measure-
143ment equation applied in the statistical filtering method. With
144this fusion framework, a state-space model can be established.
145Then, the KF can fuse the prediction value with the physical
146degradation model to get an optimized capacity prediction.
147The rest of this paper is organized as follows. Section 2
148introduces the principle of the RVM algorithm and the KF
149algorithm briefly. In Section 3, the proposed hybrid strategy
150for battery RUL prediction is described in detail. Experimental
151results are shown in Section 4 based on a commercial battery
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