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Abstract: Autonomous Underwater Vehicles (AUVs) need positioning systems besides the
Global Positioning System (GPS), since GPS does not work in underwater scenarios. Possible
solutions are the Simultaneous Localization and Mapping (SLAM) algorithms. SLAM algorithms
aim to build a map while simultaneously localizing the vehicle within this map. However, they
offer limited performance when faced with large scale scenarios. For instance, they do not create
consistent maps for large areas, mainly because uncertainties increase with the scale of the
scenario. In addition, the computational cost increases with the map size. The use of local maps
reduces computational cost and improves map consistency. Following this idea, in this paper
we propose a new SLAM approach that uses independent local maps together with a global
level stochastic map. The global level contains the relative transformations between local maps.
These local maps are updated once a new loop is detected. Local maps that are sharing a high
number of features are updated through fusion, maintaining the correlation between landmarks
and vehicle. Experimental results on real data obtained from the REMUS-100 AUV show that
our approach is able to obtain large map areas consistently.
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1. INTRODUCTION

Mapping and localization techniques are necessary for
many underwater applications. Some examples of these
applications are underwater cartography, geological map-
ping, off-shore structures inspection, studies of biodiver-
sity or deep-water archaeology. Different underwater vehi-
cles have been developed in order to explore completely
unknown underwater regions, for instance the so called
Autonomous Underwater Vehicles (AUVs). An AUV is
equipped with onboard sensors, which provide information
about the vehicle, such as speeds, orientations or acceler-
ations, and about the environment, such as 3D clouds of
points from the sea floor or the relative location of salient
features with respect to the vehicle. This information is
very valuable to calculate the approximate position of the
vehicle.

Terrestrial and aerial vehicles can localize themselves with
Global Positioning System (GPS). However, underwater,
GPS can not be used because electromagnetic waves are
strongly attenuated through the medium of water. A stan-
dard for bounded xyz navigational position measurements
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for underwater vehicles is the long-baseline (LBL) acoustic
transponder system (Hunt et al. (1974)). LBL operates
on the principle of time-of-flight and it is been proven
to operate up to a range of 10 km (Whitcomb et al.
(1999)). The main drawback of LBL is that it requires two
or more acoustic transponder beacons to be tethered to
the sea floor. Short-baseline (SBL) systems provide more
accurate positioning information, but suffer from the same
drawbacks than the LBL. Internal sensors, such as the In-
ertial Measurement Unit (IMU) and the Doppler Velocity
Log (DVL) do not give absolute localization, therefore the
localization problem suffers from drift due to odometric
noise. Furthermore, the detection of salient features in
the environment is a complex task due to measurement
noise. These noises makes the mapping and localization
a difficult challenge. Simultaneous Localization and Map-
ping (SLAM), also known as Concurrent Mapping and Lo-
calization (CML), is one of the fundamental challenges of
robotics (Durrant-Whyte and Bailey (2006)). The SLAM
problem involves a joint task of simultaneously estimating
the map and localizing the vehicle inside this map.

A well known and widely used SLAM approach is the
Extended Kalman Filter SLAM (EKF-SLAM) (Smith
et al. (1988)). EKF-SLAM represents the vehicle’s pose
and the location of a set of environment features in a
joint state vector. This vector is estimated and updated by
the EKF. The EKF provides a suboptimal solution due to
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several approximations and assumptions, which result in
divergences (Castellanos et al. (2007)). In large areas, EKF
complexity grows with the number of landmarks, because
each landmark is correlated to all other landmarks. This
means that EKF memory complexity is O(n?) and a time
complexity of O(n?) per step, where n is the total number
of features stored in the map.

The use of submaps has been shown to address the prob-
lems of consistency and computational complexity. An
early example of this strategy is the Decoupled Stochas-
tic Map (DSM) (Leonard and Feder (2000)). The DSM
uses non-statistically independent submaps. Therefore the
correlations are broken introducing inconsistency in the
map. Similar inconsistencies were seen in (Aulinas et al.
(2010)), where submaps were assumed to be independent
but still shared information. Different techniques, such as
the Constrained Local Submap Filter (CLSF) (Williams
et al. (2002)) or Local Map Joining (MJS) (Tardds et al.
(2002)) produce efficient global maps by consistently com-
bining completely independent local maps. The Divide
and Conquer SLAM (DCS) (Paz et al. (2008)) is capable
to recover the global map in approximately O(n) time.
The Constant Time SLAM (CTS) (Leonard and Newman
(2003)), the Atlas approach (Bosse et al. (2004)), and the
Hierarchical SLAM (HS) (Estrada et al. (2005)) store the
link between local maps by means of an adjacency graph.
The HS imposes loop constraints on the adjacency graph,
producing a better estimation of the global level map. The
Conditionally Independent Local Maps (CILM) (Piniés
and Tardds (2008)), is based on sharing information be-
tween consecutive submaps. This way, a new local map is
initialized considering the a-priori knowledge.

These submapping techniques demonstrate that using
submaps, both linearization errors and computational cost
can be addressed at the same time, improving the con-
sistency of EKF-SLAM (Castellanos et al. (2007)). Only
few of them have been tested on underwater scenar-
ios (Williams (2001); Roman and Singh (2007)), where
some extra constraints have to be taken into account.
Firstly, the terrain sensing is limited to either acous-
tics (Ribas (2008)) or near-field vision (Eustice (2005)),
because electromagnetic waves are strongly attenuated in
the water. Secondly, underwater scenarios are in general
unstructured and require 3D navigation (6-DOF motion),
while most current SLAM solutions are used on man-made
(geometrically simple) indoor spaces, where a 2D map
representation is sufficient. Therefore, the use of SLAM
on AUV navigations requires further testing and improve-
ments.

The main contribution of our approach is the strategy used
to decide whether to fuse the submaps. This decision is
made on the basis that fusing two maps that share many
landmarks will produce a better update than fusing two
maps that only share a few landmarks. The experiments
done with real data show a a bounded effect of the
linearization error and also a precise reconstruction of the
map since the drift suffered in shorter distances is smaller,
and the data association can be more robustly solved as
compared to other state of the art techniques.

The rest of the paper is structured as follows: Section 2
describes the novelty of our SLAM approach. The standard
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Algorithm I: Selective Submap Joining SLAM

begin mission
while navigating do
%i,P; = EKF SLAM() « (Build submap M)
Xa, f’g = build,global,map(/)zi, ﬁz)
HLoop = check,possible,loops(;(\G7 ﬁg)
for j = Hy0p do
refer M; and M; to a common base reference
Hij = data,association(;c\i,/)zj, ﬁi, ﬁj)
if H;; > threshold then
/ﬁij,ﬁij = map,fusion(;(\i7 ﬁi, ;Ej, ﬁj, Hijz)
Xa, ﬁc = update,global,map(;c\ij, 1/52])
endif
endfor

endwhile

EKF and the map fusion approach are also presented.
Section 3 describes the experimental setup and the results
obtained using a 6-DOF vehicle. Finally, conclusions and
future work are presented in Section 4.

2. SELECTIVE SUBMAP JOINING BASED SLAM

The basis of the Selective Submap Joining SLAM (SSJS)
(see Algorithm T) lies in the EKF-based SLAM. A sequence
of EKF-based submaps is built, as explained in Subsec-
tion 2.1. The size of these submaps is predefined by the
total number of features per map and by the uncertainty
boundaries. The links between local maps are stored in
a global level map, as described in Subsection 2.2. This
graph information allows checking whether a loop closing
event is occurring, following the strategy presented in
Subsection 2.3. The main novelty of our approach lies
in the fact that upon loop closure, we decide to fuse
two maps or to keep them independent depending on
the number of common landmarks, in contrast to other
approaches that fuse maps regardless of the information
they share (Williams (2001); Tardés et al. (2002); Estrada
et al. (2005); Paz et al. (2008)).

2.1 Map Building

A map is built using a standard EKF algorithm (Al-
gorithm II). The EKF estimates the state, at a certain
time step k, of a dynamic non-linear system from a series
of incomplete and noisy measurements, as its mean xj
and the covariance Pj. The algorithm iterates continously
through three steps: prediction, observation and update.
The prediction stage uses the motion model f to estimate
the current state Xj, from the previous time step xj_1, and
control inputs (i.e. odometry) uy, if available. (see (1)).
The hat notation denotes an estimate based only on this
prediction, before corrections from sensor input.

Xe = f(Xp—1,up) Py = F.P._1F} +G.Q,G} (1)
In general, the motion model is a non-linear function,
which requires the following linearizations for predicting
the state covariance at time k:
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