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Abstract As a promising numerical tool of structural dynamics in mid- and high frequencies, the

wave and finite element method (WFEM) is receiving increasingly attention and applications. In

this paper, an enhanced WFEM has been developed with a reduced model and a new eigenvalue

scheme. The reduced model is applicable for structures with piezoelectric shunts or local dampers;

the new eigenvalue scheme can mitigate the ill-conditioning when the wave basis is calculated. The

enhanced WFEM is applied to a thin-wall structure with periodically distributed piezoelectric mate-

rials (PZT). Both free wave characteristics and forced response are analyzed and the influences of

the suggested enhancements are presented. It is shown that if the control factors are properly cho-

sen, these enhancements can improve the accuracy while accelerating the calculation. Resulting

from the complexity of the application, these enhancements are not optional but imperative.
� 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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241. Introduction

25For a problem concerning structural dynamics, it is always
26possible, at least in principle, to arrive at the same conclusions
27by either mode or wave approach. This equivalence is termed
28‘‘wave-mode duality” in the literature,1 and it can be theoreti-
29cally demonstrated in some simple cases.1,2 In spite of that,
30each approach has its own advantages and each provides dif-
31ferent views for understanding the same dynamic structural
32system.
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33 At low frequencies, a structure can be regarded as a closed
34 system. The structural motion is dominated by well-separated
35 global stationary modes, so it is reasonable to understand the
36 dynamic deformation of a structure as the superposition of
37 modal motions. For a discrete structural model, the number
38 of modes equals the overall number of degrees-of-freedom
39 (DOFs). However, most of the high-order modes hardly con-
40 tribute to the deformation. It is therefore possible to reduce
41 the size of the problem by truncating modes.3–5 In terms of
42 vibration control, the guidelines given by the mode approach
43 is to control the vibration of a single mode or multiple
44 modes.6,7

45 Alternatively, in the wave perception, structural deforma-
46 tion is regarded as the superposition of the wave motions,
47 while natural modes are understood as standing waves induced
48 by the reflection of waves on the boundaries.8 At higher fre-
49 quencies, the waves could be transmitted through the bound-
50 aries and power is radiated or absorbed in the remote parts
51 of the structure.9 Then the structure is more suitable to be trea-
52 ted as an open system where resonance behavior is less appar-
53 ent. It is then more reasonable to employ the wave approach.
54 The guideline given by the wave approach for vibration reduc-
55 tion is to modify the wave properties in the interested fre-
56 quency band so as to dissipate or localize the injected
57 energy.10,11 This idea has drawn considerable research atten-
58 tion these years with the development of the periodic structures
59 or phononic materials.12 Since the waves are independent of
60 the boundary conditions, the vibration reduction performance
61 induced by waves is insensitive to boundary conditions as
62 well.13

63 The forced response of a structure can be predicted by the
64 wave approach if the structure is periodic.14,15 If the structure
65 is partly periodic, for example a structure with several different
66 periodic substructures or a structure with both periodic parts
67 and non-periodic parts, wave approach can still be applied
68 by the diffusion matrix method16 or hybrid WFEM/FEM
69 (wave and finite element method/finite element method).17,18

70 If the structure is near periodic, for example a periodic struc-
71 ture with spatially homogeneous random properties, the wave
72 approaches can also be used. A promising method named
73 stochastic wave finite element19,20 (SWFE) addresses this prob-
74 lem by a hybridization of the deterministic wave finite element
75 and a parametric probabilistic approach. If the structure is
76 generally non-periodic, a homogenization approach can be
77 performed, leading to an equivalent uniform/periodic structure
78 and the wave approaches can be applied. In this case, the
79 obtained wave characteristics represent the low frequency glo-
80 bal behavior of the original structure. The main advantage of
81 using the wave approach is that a periodic structure/substruc-
82 ture can be analyzed by only modeling the smallest repetitive
83 unit cell. In comparison with the full model of the structure/-
84 substructure, the dimension of problem is significantly reduced
85 and the computing is therefore accelerated. This feature makes
86 the wave approach a promising method in mid- and high fre-
87 quency structural analysis21 when full FE analysis is rather
88 time-consuming.
89 To manually obtain the desired wave dispersion
90 characteristics, periodically distributed piezoelectric patches
91 with electric circuits have already been considered in the liter-
92 ature.22–24 Piezoelectric materials have the ability to transform

93mechanical energy to electrical one and vice versa.25 This
94allows one to drastically modify the modal and wave charac-
95teristics especially when semi-active circuits are employed.13,26

96In all these applications concerning wave approach, the
97core information is the wave characteristics of the structure.
98That is, at a given frequency, which waves exist in the structure
99and how they travel (wavenumbers and wave shapes). Analyt-
100ical formulas can be found for relatively simple cases.27–29 For
101periodic structures with complex configurations, for example
102the uniform thin-wall structure studied by Houillon et al.30,
103the analytical solutions are of limited value, particularly at
104higher frequencies. In recent years, WFEM has been developed
105to access the wave characteristics of the periodic structures.15

106In WFEM, a unit cell is firstly modeled by FEM and the Bloch
107theory is then imposed. It finally leads to an eigenvalue prob-
108lem, yielding the frequency, wavenumbers and wave shapes.
109WFEM has been applied to 1D periodic structures,31

110plates,32,33 thin-wall structures,30 piezoelectric structures17

111and fluid-filled pipes.34 The experimental studies have also
112been conducted concerning the wave characteristics of the per-
113forated plates35, ribbed panels36 and 1D piezoelectric waveg-
114uides.37 The dispersion curves can be recognized by a spatial
115Fourier transform of the steady-state response of the finite
116structure; the results match very well with the numerical results
117in the aforementioned studies.
118However, WFEM still has a series of numerical issues38,39

119including matrix ill-conditioning in free wave analysis and
120the incorrect estimation of strongly evanescent waves in forced
121response analysis. Moreover, if the number of DOFs in the FE
122mesh of the unit cell is numerous, the computing will become
123slow.
124To overcome the matrix ill-conditioning while analyzing
125the free waves, several eigenvalue schemes have been sug-
126gested10,40 and they mitigate the problem to some extent.
127To improve the accuracy of the forced response analysis,
128it is suggested to truncate the wave basis41,42 so that only
129the propagating and less-decaying waves are retained. How-
130ever, the methods have only been validated on rather simple
131structures. To accelerate the WFEM, reduced models have
132been developed, and the coordinates transfer matrix can
133be formed by the wave shapes at selected frequencies43 or
134the modal shapes of a unit cell31 with all the DOFs con-
135necting the adjacent cells fixed. However, the former
136strongly depends on the selection of waves and the latter
137is not applicable when there are local dampers or piezoelec-
138tric shunts inside the unit cell.
139In this paper, an enhanced WFEM has been developed with
140a reduced model which works for piezoelectric structures. A
141new eigenvalue formula is proposed to further improve the
142accuracy of the scheme used in the literature.10,31,43 The
143method is applied to a thin-wall structure with periodically dis-
144tributed piezoelectric patches shunted by identical circuits. The
145method is validated not only by comparing the dispersion
146curves but also by checking an energy criterion featured by
147piezoelectric systems. The forced response of the structure is
148conducted by WFEM, where the influences of the factors, such
149as the number of the retained modes, eigenvalue scheme and
150the number of the kept waves, are separately presented and
151discussed. Eventually the guidelines for choosing the factors
152are given.
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