12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

IFAC

Pattern Mining for Predicting Critical
Events from Sequential Event Data Log

Jun Chen* and Ratnesh Kumar *

* Department of Electrical and Computer Engineering
Towa State University, Ames, IA 50011 USA
e-mail: {junchen,rkumar} @iastate.edu.

Abstract: This paper studies the mining of patterns for predicting critical events from observed
ordered event data, where the observations can contain interleaving from non-predictor and
other predictor event sequences. These are characteristics of many practical applications such as
monitoring in power systems or telecommunication networks, as well as computational biology.
For settings where system behaviors are affected by noise, a critical event can sometimes occur
without its predictor executed prior to it, and we propose algorithm to recursively compute the
frequency that a predictor candidate precedes the critical event. This we use for identifying a
predictor, and study the performance of such a scheme. We also consider the noise-free settings,
in which a critical event occurs only after the execution of its predictor, and propose an algorithm
to recursively compute the set of maximal predictors for each critical event.

Keywords: Pattern mining, finite automata, alarm monitoring, common subsequence,

algorithm.

1. INTRODUCTION

For certain monitoring applications such as failure diagno-
sis (Chen and Kumar (2013a,b,c)) and failure prediction
(Kumar and Takai (2010); Chen and Kumar (2014b)),
knowledge of system model is essential for any detection
algorithm. However, in many scenarios, such as business
processes, offline determination of a detailed model de-
scribing a certain process is challenging and many times
impossible since the system may be overly complex, e.g.,
vast legacy software. The task is further complicated by
the fact that, there exists discrepancy between a prescrip-
tive model describing how process is expected to work and
a driving model according to which the system evolves.
Thus even the prescriptive models may not be used (while
driving models are overly complex to obtain). Therefore,
instead of performing offline process/workflow modeling,
there have been efforts towards online process/workflow
mining, where the idea is to develop a model describing
the underlying process, given the workflow logs in terms
of ordered event data. See the next section for literature
information on workflow/process mining.

The task of mining workflow/system model is computa-
tionally hard (Hsu et al. (2012)), and instead, the simpler
problem of pattern mining intends to find certain sequence
patterns that precede certain critical events. Such pre-
dictor pattern identification problem has many real-world
applications such as alarm log processing in power sys-
tems and telecommunication networks, and genetic motif
discovery in computational biology (e.g., Liu et al. (1995),
Chudova and Smyth (2002) and Bailey and Elkan (1995)).

* The research was supported in part by the National Science Foun-
dation under the grants, NSF-ECCS-0801763, NSF-ECCS-0926029,
and NSF-CCF-1331390.

978-3-902823-61-8/2014 © IFAC

The authors Agrawal and Srikant (1995); Pei et al. (2004);
Han et al. (1999) and Cheng et al. (2005) study a type
of pattern mining problem where a pattern is simply a
repetitive sequence of events, not necessarily associated
with a critical event.

In this paper, we study the mining of patterns for pre-
dicting critical events from observed ordered event data,
where the observations can contain interleaving from non-
predictor and other predictor event sequences. Two dif-
ferent scenarios, noisy and noise-free, are considered. In
the settings where system behaviors are affected by noise,
there is a non-zero probability that a critical event can
occur without being preceded by its predictor. We propose
an algorithm to recursively compute the frequency that a
predictor candidate precedes the critical event. A candi-
date is deemed to be a predictor for certain critical event
if its frequency of occurrence preceding to that critical
event is above a user-specified confidence level and it is
“maximal”, i.e., none of its supersequence is a predictor
candidate.

We also consider the noise-free settings, in which a critical
event can occur only after the execution of its predictor,
and the predictor mining reduces to finding the maximal
common subsequences, which has been studied by Hunt
and Szymanski (1977); Hirschberg (1975); Allison and Dix
(1986). We propose another recursive algorithm to com-
pute the set of maximal predictors for each critical event.
The related work by Wang and Johnson (2007) considers
a similar problem of pattern mining from event sequence
log, where the patterns are assumed to be contiguous
event sequences of the system model. In this paper, we
relax such assumption about contiguity by allowing inter-
leaving among the predictors as well as the non-predictor
sequences.

10.3182/20140514-3-FR-4046.00120

WODES 2014
Cachan, France. May 14-16, 2014

The contributions of this paper are summarized as follows:

e Compared to prior works, we allow the observed
ordered event data to contain interleaving from non-
predictor and other predictor event sequences;

e We propose recursive algorithms for mining predictor
patterns for both noisy and noise-free settings;

e For noisy setting, we provide the existence of a
bound for the length of event log that guarantees the
proposed algorithm to output correct predictor within
a desired error probability.

The rest of this paper is organized as follows: Section 2
briefly describes some related work on process mining.
The notation and some preliminaries are presented in
Section 3. The formulation of the pattern mining problem
is presented in Section 4, which also provides the recursive
algorithm for the computing the predictors in setting
of noisy observations. Section 5 considers the noise-free
observations and provides an algorithm to recursively
compute the set of maximal predictors for each critical
event. The paper is concluded in Section 6 with directions
for future work.

2. RELATED WORK ON PROCESS MINING

While pattern mining attempts to discover the signatures
for critical events, process mining or model identification
(Cabasino et al. (2011)) is a more ambitious endeavor
that tries to uncover the entire process model. Being again
driven by the observed ordered event data, it is a related
topic of research, and here we provide a short summary
for interested readers. An algorithm to extract a process
model in form of a Petri net from event sequence log was
introduced in van der Aalst et al. (2003, 2004), where the
set of underlying model that can be extracted from event
sequence log is also given. Cook and Wolf (1998) investi-
gated the process mining problem in the context of soft-
ware engineering processes, under the framework of gram-
mar inference by Gold (1967, 1978) and Angluin (1987).
Cook and Wolf (1998) presented several approaches: i)
RNet, which is based on neural network; ii) Ktail, which
outputs a finite state automaton whose state space is given
by the set of equivalence classes of traces that have the
same k-step extensions; and iii) Markov method, which as-
sumes that the underlying model is Markovian with order
at most 2, whose dependencies are statistically deduced
when the occurrence frequencies of contiguity for event
pairs is above a user-specified threshold.

As indicated by Cook and Wolf (1998), the process min-
ing can be cast into a grammar inference problem as in
Gold (1967, 1978) and Angluin (1987). An algorithm for
grammar inference, called L* algorithm, was proposed by
Angluin (1987) which requires a membership oracle as well
as an equivalence oracle, the former of which identifies the
membership of a given trace while the latter can confirm
the correctness of a postulated grammar and return a
counterexample if the postulate is false. The stochastic
grammar identification was addressed in Carrasco and
Oncina (1994) by merging the equivalent nodes in a com-
plete prefix tree, where two nodes are deemed equivalent if
they have equivalent successors and the distance between
their distributions over the set of successors is within a
tolerance. The identification of stochastic grammar can

also be addressed in the framework of source identification.
Cybenko and Crespi (2011) consider the identification of a
hidden Markov model from the observed symbols sequence
using nonnegative matriz factorization. The proposed al-
gorithm in Cybenko and Crespi (2011) computes a fre-
quency matrix by computing, for each pair of sequence
of observed symbols, the occurrence frequency that the
first sequence of the pair is followed immediately by the
second sequence of that pair. The order of the hidden
Markov model as well as the state transition matrix are
then estimated from this frequency matrix, by computing
its positive rank and nonnegative matrix factorization,
which in general is approximated by optimizing an ob-
jective function consisting of a type of divergence. It turns
out that (see Hsu et al. (2012)) identification of hidden
Markov models from data is computationally hard. Hence
the literature also explores the simpler problem of order es-
timation of a Markov model. Merhav et al. (1989) studied
the estimation of the order of a fully observable Markov
process, whereas Liu and Narayan (1994) investigated
the order estimation of hidden Markov model. The order
estimation problem examines the dependency of data in
the observed sequence with its preceding history, and is
relevant for data compression (source coding) for storage
and communication.

3. NOTATIONS AND PRELIMINARIES

For an event set 3, define & := ¥ U {e}, where ¢ denotes
“no-event”. The set of all finite length event sequences over
Y, including €, is denoted as X*. A trace is a member of
>*, i.e., a trace is a sequence of events, and a language is a
subset of 3*. We use s < t to denote that s € ¥* is a prefix
of t € ¥*, pr(s) to denote the set of all prefixes of s, and |s|
to denote the length of s or the number of events in s. For
o € XY and s € ¥*, we use 0 € s to denote that the event
o is an element of the trace s. For ~e {<, <, > > =}
and n € N, where N denotes the set of all nonnegative
integers, define ¥~ := {s € ¥* | |s| ~ n} and denote 3="
as X" for simplicity. For any s = 01 ...0|, € ¥, denote
as s~ 1= Ols|--- 01 for the reverse of s. t € 25181 is said to
be a subsequence of s, denoted t < s, if there exists indices
1 <y <... <y < |s| such that t = oy, ...0i,, and in
this case we also call s as a supersequence of t. t is said to be
a common subsequence of s; and s5 if t < 51 and t < s5.
The interleaving product of a pair of traces s,t € X%,
denoted s X ¢, is defined recursively as follows: € X € :=¢;
Vs, s’ € Y* 0,00 € ¥ : so0 W sd’ = (so X §).o’ +
(s W s'0’")o. The interleaving product of two languages
Ly and Lo is given by, L1 X Ly := {sX ¢ | s € Ly,t € Lo}

A finite state automaton is a tuple G = (X, X%, o, Xo),
where X is the set of states, X is the set of events, a : X x
Y — 2% is the transition function, and X, C X is the
set of initial states. G is deterministic if | Xo| = 1, i.e., a
unique initial state, and Vo € X,0 € &, |a(z,0)| < 1 and
|a(z,€)] = 0, i.e., each state has at most one transition on
each event and no transition on “no-event”; otherwise G
is called nondeterministic. A path of G is a sequence of
transitions (z1,01,2,...,0,—1,%y,) such that o; € ¥ and
Ziy1 € afx;,04) for each 1 <4 < n —1. A path is called
a cycle if z,, = z1. For any x € X, define the e-closure of
z, denoted as €5(x), as the set of all states that can be

Download English Version:

https://daneshyari.com/en/article/715458

Download Persian Version:

https://daneshyari.com/article/715458

Daneshyari.com

https://daneshyari.com/en/article/715458
https://daneshyari.com/article/715458
https://daneshyari.com

