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a b s t r a c t 

The Jet Transport method has emerged as a powerful tool for the numerical integration 

of ordinary differential equations; it uses polynomial expansions to approximate the flow 

map associated to the differential equation in the neighbourhood of a reference solution. 

One of the main drawbacks of the method is that the region of accuracy becomes smaller 

along the integration. In this paper we introduce a procedure to determine a ball cover- 

ing the set of given initial conditions that keeps the accuracy of the integration within a 

selected threshold. The paper gives detailed explanations of the algorithm illustrated with 

some examples of applicability, as well as a comparison with a previous existing method 

for the same purpose. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Let ˙ x = f (t, x ) , x ∈ R 

n , be a system of ordinary differential equations (ODE), and φt ( t 0 , x 0 ) the associated flow map: if x ( t ) 

denotes the solution of the ODE such that x (t 0 ) = x 0 , then x (t) = φt (t 0 , x 0 ) . The Jet Transport (JT), also known as Differential 

Algebra, procedure is a semi-numerical method that propagates a neighbourhood U of x 0 instead of the single initial condi- 

tion x 0 ; this is, at the first time step h of the propagation, the initial condition x 0 is replaced by a polynomial of degree one 

P t 0 ,x 0 (ξ ) = x 0 + ξ ∈ R 

n that parameterises U , and a higher degree polynomial approximation P t 0 + h,x 0 
(ξ ) of φt 0 + h (t 0 , x 0 + ξ ) 

is computed. This resulting polynomial is propagated in the next step, and the procedure is repeated recursively. The basic 

idea of the method is shown schematically in Fig. 1 . 

The propagated polynomials P t, x ( ξ ) are computed using an implementation of a numerical integration method for ODEs 

in which the real number floating point arithmetic is replaced by a polynomial algebra (i.e. all the arithmetic operations 

are done using truncated polynomials up to a certain degree). The polynomials P t, x ( ξ ) provide, up to a certain order, the 

solutions of the variational equations associated to the ODE without writing and integrating them explicitly. Therefore, the 

only tools that are needed are: a numerical integration method for ODEs and a polynomial algebra package. 

For common numerical integration methods, such as Runge–Kutta, Taylor or symplectic, the step-size selection is done 

according to a local truncation error estimate. For the JT procedures it is also necessary to control the size of U . This is the 
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Fig. 1. Schematic idea of the JT propagation procedure. The circle on the left represents the neighbourhood U parameterised by ( ξ 1 , ξ 2 ), and the right 

hand side ellipse is its image at time t 0 + h . In the figure x (t 0 + h ) stands for φt 0 + h (t 0 , x 0 ) , and the image of x 0 + (ξ1 , ξ2 ) ∈ U is the point P t 0 + h,x 0 (ξ ) = 

x (t 0 + h ) + (P t 0 + h,x 0 (ξ ) | 1 , P t 0 + h,x 0 (ξ ) | 2 ) . 

problem we address in the present paper. In the proposed approach, whenever necessary, a subdivision strategy is applied 

either increasing the number of polynomials or splitting regions for the propagation. 

Jet Transport methods where introduced by Berz [7] to study beam dynamics in particle accelerators problems and, since 

then, have been used in several other fields, for instance: in Astrodynamics to study the close approaches of Near Earth 

Asteroids [3,4] , to compute a Gaussian particle filter for spacecraft navigation [14] , or to detect structures in dynamical 

systems using several indicators [11] . JT methods have also been used to compute the time evolution of probability density 

functions (PDF) according to the flow associated to an ordinary differential equation [5,10,17] . 

Currently, there are several implementations of the Jet Transport/Differential Algebra methods. Some of the most well 

known are: COSY INFINITY [9] ; TIDES [1] ; CAPD DynSys Library [15] , and DACE, which is an implementation developed from 

COSY specially adapted to the space community [12] . For this work we have used our own one [10] , which includes all the 

basic algebra and functions needed for the implementation of the numerical integration method, as well as some additional 

ones such as the inversion of functions and an equation solver. 

One of the main drawbacks of the JT methods is that the region where their accuracy is below a certain threshold be- 

comes smaller along the integration. This paper presents a new procedure to determine how and when the region and as- 

sociated polynomials can be split to maintain the required accuracy. The method is based on the covering of the propagated 

states by new neighbourhoods. The algorithm presented contains some ideas similar to the ones of the interval enclosure 

methods [2,6] , in which the results of the operations are assured to be in a given interval. In the current algorithm, the re- 

sults of the operations are given by polynomials, which are assured to be in a given region. The new algorithm is compared 

with the Automatic Domain Splitting (ADS) approach, an algorithm developed by Wittig et al. [16] for this same problem, 

in which the basic idea is the division and rescaling of the propagation polynomials along the integration. 

It must be noted that both approaches mentioned have two main steps: the first one detects when the splitting should 

be done, and the second accounts for how the division of neighbourhoods or polynomials is implemented. In both cases the 

procedures work schematically as follows. First a certain neighbourhood is propagated until some condition breaks because 

the accuracy of the propagation is below some fixed tolerance. Up to that point the method is a usual JT flow propagation. 

When the condition breaks the second part of the algorithm starts: the polynomial or the set of points, depending on the 

selected strategy, splits. After the division, the usual Jet Transport flow propagation is started with new initial conditions. 

The paper is organised as follows: in Section 2 we briefly introduce the step control strategy for the integrator used as 

well as how to determine if the polynomials are accurate enough; in Section 3 we review the (ADS) approach; Section 4 de- 

scribes the procedure that we have developed; in Section 5 we give some numerical tests and comparisons between both 

methods, while the last section ends with some remarks and conclusions. 

2. Step-size control in polynomial algebra propagation 

In this section we briefly discuss how to determine the step size in a JT procedure. As numerical integration method we 

have used Taylor’s method for ODE (as implemented by Jorba and Zou [8] ). Given a certain accuracy level ε, the optimal 

step of this method is given by (see [13] for details) 

h opt = min 

{ (
εe 2 ‖ x (1) ‖ ∞ 

‖ x (n −1) ‖ ∞ 

) 1 
n −2 

, 

(
ε‖ x (1) ‖ ∞ 

‖ x (n ) ‖ ∞ 

) 1 
n −1 

} 

, 

where x ( i ) are the coefficients of Taylor’s method solution written in powers of the step size h at each step, this is: 

φt n + h (t n , x n ) = 

n ∑ 

i =0 

x (i ) (t n , x n ) h 

i . 
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