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a b s t r a c t 

This paper is concerned with the problem of coexistence and dynamical behaviors of mul- 

tiple equilibrium points for complex-valued competitive neural networks with discontin- 

uous non-monotonic piecewise nonlinear activation functions. Without assuming the lin- 

earity or monotonicity of the activation functions, by virtue of the fixed point theorem 

and other analytical tools, several new sufficient conditions are developed to guarantee 

that the discontinuous complex-valued competitive neural networks have at least 16 n equi- 

librium points, among which 9 n are locally stable. In addition, some criteria for assuring 

the coexistence and local stability of multiple equilibria for real-valued competitive neu- 

ral networks are established, which also show that the number of stable equilibria for the 

complex-valued neural networks is larger than the real-valued ones. A numerical simula- 

tion is conducted to illustrate the applicability and effectiveness of the obtained theoretical 

findings. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In the past few decades, the neural network models considered in the dynamics analysis in most papers have only one 

single time scale, which implies that only the neuron activity is taken into account in these models. Namely, there is only 

one type of variables—the state variables of the neural neurons in these models. Nevertheless, in the dynamic neural net- 

work, since the learning process, the synaptic weights also change with time, and the change of the connection weights 

may have influence on the dynamics of the neural network. Hence, the competitive neural network with long-term memory 

and short-term memory has been widely concerned in theoretical research (see [1–5] and references therein). Generally 

speaking, competitive neural network contains two types of state variable: short-term memory (STM) and long-term mem- 

ory (LTM). STM describes the rapidly changing behavior of neuronal dynamics, whereas LTM describes the slow behavior of 

unsupervised neuronal synapses. Until now, there have been considerable works on multistability of real-valued competitive 

neural networks [6–8] . 

As the extension of real-valued neural networks, the complex-valued neural network is one that processes information in 

the complex plane, namely, it has complex-valued input and output signals, complex-valued state variables, complex-valued 

connection weights and complex-valued activation functions. Due to more complicated properties than the real-valued neu- 
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ral network, it has been extensively studied [9–16] . However, so far, to the best of the authors’ knowledge, multistability for 

complex-valued competitive neural networks (CVCNNs) has not been considered in the literature. 

As we all know, the number of equilibrium points depends on the practical application of neural networks. Some appli- 

cations, such as optimization, require that the network has only one equilibrium point of the mono-stable state. However, 

multiple stable equilibria of the neural networks are necessary whenever neural networks are used in the other appli- 

cations such as image processing, associative memory and pattern recognition (see [17,18] and references therein). Multi- 

stability of neural networks has been extensively investigated [19–38] . In [19] , by means of the fixed point theorem and 

other analytical tools, the authors developed some certain sufficient conditions that ensure that the n -dimensional discon- 

tinuous neural networks with time-varying delays can have at least 5 n equilibrium points, 3 n of which are locally stable 

and the others are unstable. In [22] , by partitioning the state space, employing analysis approach and Cauchy convergence 

principle, sufficient conditions were established for the existence and local exponential stability of multiple equilibrium 

points, which ensure that 2 n -dimensional Cohen–Grossberg bidirectional associative memory neural networks with k -level 

discontinuous activation functions can have k n equilibrium points. In [23] , based on the geometrical properties of the dis- 

continuous activation functions and the Brouwer’s fixed point theory, the authors analyzed multistability for the complex- 

valued neural networks with discontinuous activation functions and time-varying delays and several sufficient criteria were 

obtained to assure the existence of 25 n equilibrium points. Among them, 9 n points are locally stable and 16 n − 9 n equi- 

librium points are unstable. In [29] , the authors analyzed complex-valued neural networks with unbounded time-varying 

delays and some new sufficient conditions were derived to ensure that existence of [(2 α + 1)(2 β + 1)] n (α, β ≥ 1) equi- 

librium points in which [(α + 1)(β + 1)] n equilibrium points are locally μ-stable and the remaining equilibrium points 

[(2 α + 1)(2 β + 1)] n − [(α + 1)(β + 1)] n are unstable for the considered neural networks. It must be pointed out that com- 

pared with the storage capacity of the real-valued neural networks, the storage capacity of the complex-valued ones with 

same dimensions is lager [34,35] . Consequently, it is meaningful to study the multistability of CVCNNs with discontinuous 

non-monotonic piecewise nonlinear activation functions. 

It is well known that the multistability analysis of neural networks critically depends on the structures of activation 

functions chosen. So far, there exist two kinds of activation functions can be considered for neural networks, namely, the 

continuous activation function and the discontinuous activation function. There is no doubt that neural networks with dis- 

continuous activation functions play an important role in dealing with dynamical systems possessing high-slope nonlinear 

elements. Thus, lots of significant works have been devoted to analyzing the dynamical behavior of neural networks with 

discontinuous activation functions (see [19–23] and references therein). Nevertheless, multistability for CVCNNs with dis- 

continuous non-monotonic piecewise nonlinear activation functions has not been considered in the literature, which gives 

us another motivation to study the present research. 

Generally speaking, in the hardware implementation of dynamical neural networks, the time delays inevitably occur in 

the neural networks on account of the finite switching speed of amplifiers and the transmission delays during the com- 

munication between neurons. Consequently, the research of the influence of time delay on the stability of the system has 

become a hot topic with great theoretical and practical importance [39–43] . 

Motivated by the above discussion, the objective of this paper is to establish some new sufficient conditions to guaran- 

tee that the CVCNNs with time-varying delays and discontinuous activation functions have at least 16 n equilibrium points, 

among which 9 n are locally stable. The remaining part of this paper is organized as follows. The CVCNNs with time-varying 

delays and discontinuous activation functions are presented and some preliminaries are briefly outlined in Section 2 . In 

Section 3 , some new sufficient conditions are derived towards the coexistence and explicit dynamical analysis of the mul- 

tiple equilibrium points for the considered CVCNNs. Furthermore, some criteria are given towards the coexistence and local 

stability of multiple equilibria for the real-valued competitive neural networks. Section 4 provides one numerical example 

to demonstrate the feasibility and the effectiveness of the obtained results. Finally, some conclusions are drawn in Section 5 . 

Notation: The notations are quite standard. Throughout this paper, R and C show the set of real numbers and the set 

of complex numbers, respectively. R 

n and C 

n show, respectively, the n -dimensional Euclidean space and the n -dimensional 

unitary space. R 

n ×n and C 

n ×n are, respectively, the set of all n × n real matrices and the set of all n × n complex matrices. 

Let i be the imaginary unit, i.e., i = 

√ −1 . A 

R and A 

I denote, respectively, the real and the imaginary parts of matrix A ∈ 

C 

n ×n . co (M) is the closure of the convex hull for set M . For a vector-valued function f (·) = ( f 1 (·) , f 2 (·) , . . . , f n (·)) T ∈ R 

n , 

define co [ f (·)] = co [ f 1 (·)] × co [ f 2 (·)] × . . . × co [ f n (·)] , where co [ f k (·)] = [ f −
k 

(·) , f + 
k 

(·)] , for k = 1 , 2 , . . . , n and ‘ × ’ represents 

the Cartesian product. B([ t 0 − τ, t 0 ] , R 

4 n ) represents the Banach space of continuous vector-valued functions which map the 

internal [ t 0 − τ, t 0 ] into R 

4 n with the topology of uniform convergence. For a vector x = ( x 1 , x 2 , . . . , x n ) 
T ∈ R 

n , ‖ x ‖ ξ denotes 

that the norm of x with ‖ x ‖ ξ = max 
k 

{ ξk | x k | } , where ξ = ( ξ1 , ξ2 , . . . , ξn ) 
T with ξ k > 0 for k = 1 , 2 , . . . , n . ‘ D 

−’ denotes the 

upper left Dini derivative operator. 

2. Neural network model and preliminaries 

Consider a class of CVCNNs with time delays described by the following nonlinear delayed differential equations: 
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