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a b s t r a c t 

The linearized 3D Euler equations on an f -plane with constant stratification admit a family 

of analytical wave solutions. Here, we investigate the Lagrangian properties of one such so- 

lution, a standing wave quadrupole, whose simplicity and symmetry make it an ideal time- 

varying 3D testbed for developing dynamical systems methods. In spite of its simplicity, 

the Eulerian solution gives rise to highly complex transport structures. Particle trajectories 

wind around tori-like surfaces with varying cross-sections. They are generally governed by 

the internal wave frequency plus subinertial frequencies, which depend on starting loca- 

tions. The spatial variation in this subinertial period produces mixing in the periodic wave 

motion, a process completely distinct from diapycnal mixing typically associated with in- 

ternal waves. Nonetheless, finite-time Lyapunov exponents, calculated from the 3D velocity 

field, clearly delineate transport barriers. These barriers identify five types of coherent La- 

grangian structures, which oscillate at the super-inertial internal wave frequency. Two of 

these types are solely located near the surface, extending to depths unassociated with any 

Eulerian flow characteristic. The discovery of such shallow structures in the absence of a 

related Eulerian signal raises the interesting question whether similar structures may be 

hiding in the real ocean. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

Transport properties have been recognized as an important characteristic of fluid flows. They are inherently Lagrangian, 

and complex trajectory patterns often emerge even from simple Eulerian velocity fields. Thus, Eulerian velocities can be no- 

toriously misleading indicators of transport mechanisms. This fact was already recognized by Cauchy and his contemporaries 

[1] , but received little attention until numerical integration of the velocity field became more tractable [e.g., [ 2 ]]. Since then 

deriving Lagrangian properties from Eulerian velocities has become a topic of considerable interest. 

Dynamical systems methods have proven to be particularly successful for this enterprise. A standard toy model for testing 

and illustrating these methods is a 2D multipole vortex system in a box. The vortex system is described by a Hamiltonian 

or streamfunction, whose flow symmetries typically are broken by a prescribed time-dependent perturbation. 
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Nearly all oceanographic applications of dynamical systems methods have been to large and mesoscale flows [e.g., 

[3–5] ]. Here vanishingly small Rossby and Froude number dynamics rule. Consequently, these flows are essentially 2D and 

have a clear distinction between Eulerian and Lagrangian time-scales. It is hardly surprising then that early applications of 

dynamical systems methods to geophysical fluid dynamics relied on box models [3] . 

Of course, ocean mesoscale flows are baroclinic, and so stable and unstable manifolds in such flows are surfaces that 

may or may not be adequately represented by curves in the plane commonly used to depict them in early box models. 

There have been a few attempts to determine the vertical structure of manifolds in realistic flow settings, and they agree 

that these barriers tend to be slowly evolving and nearly vertical curtains [6–8] . This would imply that toy box models may 

still have some applicability as testbeds. 

However, recent observations [9,10] suggest that submesoscale processes may erode the clear time and space divisions 

typical of mesoscale flows. On these scales, flows are 3D, their space- and time-scales range from 0.01 to 10 km and from 

hours to a few days, and the distinction between Eulerian and Lagrangian time-scales is blurred. This raises several funda- 

mental questions. Two of concern here are: Can dynamical systems methods identify transport barriers in such flows, and 

how can one study the interaction of submesoscale and mesoscale flows? 

A useful tool to address the first question would be an extension of the 2D box model to include both vertical and time 

dimensions. Velocity fields that could be used for this purpose are either generated by purely kinematic considerations or 

from solutions to the equations of motion. An early example of a kinematic model, designed specifically as a dynamical 

systems testbed, was proposed by Mezi ́c and Wiggins [11] . More recent examples include those by Branicki and Wiggins 

[12] and Sulman et al. [13] . A limitation of kinematic models is that they do not account for dynamical processes. On the 

other hand, most dynamically based research focuses on applications to general circulation models (GCMs) [e.g., [7,8,14] ] or 

approximations that tend to be restricted to mesoscale and comparable quasi-steady phenomena [e.g., [15,16] ]. 

There are, of course, a large number of analytic solutions for Euler flows that might be useful for addressing submesoscale 

dynamics. Examples include the nonlinear ABC flow [17–20] ; the Hill’s vortex [21] ; analytic multipolar solutions of the two- 

dimensional (2D) Euler equations [22–24] ; new classes of exact solutions developed by Pukhnachov [25] and Aristov and 

Polyanin [26] ; and Lagrangian solutions for time dependent flow fields [27] . These studies, however, are either restricted 

to 2D flow or to non-rotating frames, and none, to our knowledge, has continuous stratification. This restricts their use for 

benchmarking geophysical submesoscale flows. Staniforth and White [28,29] identified a similar need to test shallow water 

models in spherical and plane geometry for the atmosphere. Because of parameter range differences their solutions to the 

Euler equations have limited applicability to the ocean submesoscale. 

To fill the need for a dynamically based testbed suitable for assessing submesoscale transport processes in an oceanic 

setting, we propose a class of solutions to the time-dependent, stratified, 3D, incompressible, linear Euler equations on the f - 

plane. A notable characteristic of the Euler equations in this setting is that they permit super-inertial fluctuations. Although 

internal waves are widely observed, and their time- and space-scales fall within the submesoscale regime, they are not 

currently considered an important submesoscale transport mechanism [30] . 

For present purposes the relative importance of internal waves in submesoscale transport is not of primary concern. 

Instead, our interest is in the fully 3D and transitory nature of their velocity field, as these are typical attributes of virtually 

all submesoscale processes. The primary questions of concern here are whether persistent transport barriers in a 3D time- 

dependent stratified flow can be detected by traditional dynamical systems methodologies, and if so, what their time- and 

space-scale characteristics are. 

The model used to address these questions is summarized in Section 2 , with full details provided in the appendix. The 

Eulerian properties of the velocity field are described in Section 3 . Section 4 describes the Lagrangian properties and the 

transport barriers arising in this flow field. The last section summarizes and discusses some broader implications of the 

findings. 

2. Model and solution 

2.1. Euler equations on the f-plane 

The linearized Boussinesq Euler equations for a stratified incompressible fluid on an f -plane are [cf. 31 ] 
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