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a b s t r a c t 

It is impossible to obtain chaotic behavior using conventional finite precision calculations 

on a digital platform. All such realizations are eventually periodic. Also, digital calculations 

of the periodic orbits are often erroneous due to round-off and truncation errors. Because 

of these errors, periodic orbits quickly diverge from the true orbit and they end up into 

one of the few cycles that occur for almost all initial conditions. Hence, digital calculations 

of chaotic systems do not represent the true orbits of the mathematically defined original 

system. This discrepancy becomes evident in the simulations of the binary shift chaotic 

maps like Bernoulli map or tent map. Although these systems are perfectly well defined 

chaotic systems, their digital realizations always converge to zero. In the literature, there 

are some studies which replace the least significant zero bits by random bits to overcome 

this problem. 

In this paper, we propose the algorithms using this simple method for digitally imple- 

menting binary shift chaotic maps. These algorithms are suitable for both software and 

hardware solutions, and they are also applicable with any random number generator or a 

repeated bit sequence. According to the type of the random number generator, either true 

periodic orbits or true chaotic orbits of the map are obtained. Moreover, it is shown that, 

utilizing topological conjugacies, obtained true orbits of binary shift chaotic maps can be 

used to calculate true orbits of other maps such as logistic and Chebyshev maps which 

are normally subject to round-off and truncation errors. The hardware implementations of 

binary shift chaotic maps, logistic map and Chebyshev maps have been realized on a Field 

Programmable Gate Array (FPGA) platform using the proposed algorithms. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Many papers about chaos-based cryptography are published each year. These papers often propose a cryptography 

scheme depending on digital implementations of chaotic systems, and mostly the chosen system is a discrete-time map 

[1–7] . The general motivation for using chaotic systems as part of a cryptography scheme is due to the closeness between 

the properties of chaos and the requirements of cryptography [8] . These properties of chaos are expressed as follows: (i) 

mixing; (ii) sensitive dependence on initial conditions; (iii) random-like behavior [9–12] . However, it is well-known but 

mostly neglected that digital implementations of chaotic systems can only produce periodic orbits due to finite precision 
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and they produce short cycles due to round-off and truncation errors [13,14] . Some solutions have been proposed to over- 

come this problem [15] . But it is shown in [14] that after some transients almost all of the initial conditions fall into one 

of the few cycles due to transient and cycle intersections. The same study reveals that cycles with the same lengths are 

identical (circularly shifted versions of each other). Therefore, trying to increase cycle lengths is not useful for chaos-based 

cryptography. Instead, the perturbation method proposed in [16] can be applied within short time intervals to avoid an orbit 

to fall into one of the mentioned cycles. 

Even though this short cycle problem is solved by some method, we can’t assume that the properties of chaos described 

above are preserved. First of all, the sensitivity on initial conditions property is not the same with what is originally meant. 

In chaotic systems, two arbitrarily close orbits are guaranteed to be within a specific distance after some iterations. This 

property is demonstrated on computers by choosing two nearby initial conditions and observing their divergence. However, 

due to mixing (or under weaker assumption topological transitivity) and boundedness, these orbits may become arbitrarily 

close to each other once again, but they do not intersect due to the same property. On the contrary, they may (and most 

likely) intersect in digital realizations, so the sensitive dependence property collapses after some point [14] . Obviously, such 

a behavior cannot be considered as a strong random-like behavior. 

For these reasons, digital implementations of chaos are not the same with their original mathematical constructions. 

This should be evident considering their domains. While the original models are defined on a continuum which contains 

uncountably many numbers, the numbers available on a digital platform are discrete and finite. This is a problem even 

for choosing the initial condition. When we try to calculate the orbit of the initial condition π /4 of some map digitally, 

we actually choose an initial condition which is close to π /4. We can’t choose the exact initial condition because it is 

an irrational number and it cannot be expressed exactly. Although, choosing nearby numbers does not pose a significant 

problem for many other engineering applications, choosing even a slightly different number yields a completely different 

orbit in a chaotic system. Therefore, we can’t even begin to calculate the true chaotic orbits of many (in fact, uncountably 

many) numbers. Even if the chosen initial condition can be completely expressed on a digital platform, there is no guarantee 

that other points in the orbit can be expressed exactly. 

Above arguments should make it clear that the orbits obtained on a digital platform using the conventional fixed or 

floating point computations are not the true orbits of the original model. This discrepancy has drastic consequences for the 

digital realizations of the maps like Bernoulli map, tent map, and Baker’s map. All simulations of these maps converge to 

zero regardless of the chosen initial condition [17] . The common property of these maps is their parameter values. All of 

their multiplication parameters are powers of two and they don’t have any arithmetic operations that cause round-off or 

truncation. Since multiplications by powers of two can be performed as binary shifts, we will call such maps “binary shift 

chaotic maps”. These maps converge to zero on digital platforms, because numbers are expressed by a finite number of 

bits and left shift operations force least significant bits to be zero. After some iterations these zeros fill the whole memory 

storage unit, and hence, the orbit converges to zero. 

To overcome this problem, in many studies the original map is modified [18–22] . In other studies, parameter values are 

chosen very close to the power of two or a different parameter value is chosen [23–27] . In both cases, the shift operations 

are avoided and round-off and truncation errors are induced along the computations. The resulting orbits for such cases are 

the deficient (or pseudo) orbits mentioned above. 

However, since binary shift chaotic maps are free from round-off or truncation errors, they are the natural candidates for 

computing the true periodic or chaotic orbits of a chaotic system. Therefore, the studies about digital calculations of true 

chaotic orbits usually revolve around binary shift chaotic maps. In [28] , it is argued that true chaotic orbits of Bernoulli map 

can be calculated by choosing computable numbers as initial conditions [29] . However, every computable initial condition 

like π or e requires an algorithm (like the one in [30] ) for computation and this means that every initial condition should 

have a different implementation. Also, computations may get complicated as the digits of the initial condition are computed 

while the accuracy of the computations decays. For these reasons, this method is more convenient for producing true chaotic 

orbits for specific initial conditions up to N iterations while N depends on the algorithm. 

In a recent study, a method is proposed for digitally calculating true orbits of 1-dimensional piecewise-linear chaotic 

maps which can be expressed as linear fractional maps [31] . True chaotic orbits of the Bernoulli map are calculated for a 

limited number of iterations in this study. But the proposed method relies on integer calculations of the coefficients of cubic 

polynomials and the coefficients of these polynomials become huge as the iterations increase. Hence, calculations become 

impractical very quickly. Also, the calculation of the values of the points in the orbit requires solving the roots of cubic 

polynomials each iteration, and this process is not favorable for hardware implementations. It should be noted that, in this 

method, the initial conditions are represented by algebraic numbers but almost all of the real numbers are transcendental 

numbers [32] . 

Since these methods are not as easy as simply applying conventional fixed or floating point calculations, there are not 

many papers about true orbit generations and papers about applications of chaos mostly do not make a distinction between 

true chaos and its digital implementations as we have stated above [1–6] . In order to clear the misconceptions about the 

digital implementations of chaos in the literature, simpler methods are needed for true orbit generation. A simpler and 

straightforward approach for generating true orbits is to replace the least significant zero bits (LSB) by random or repeated 

bit patterns. There are a few studies which apply this idea in the literature [33–35] . In [33,34] register part of a shift 

register is treated as the approximation of the Bernoulli map and least significant bit of the shift register is replaced by a 

i.i.d (independent and identically disturbed) bit sequence to produce true periodic orbits of the Bernoulli map. Additionally, 
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