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a b s t r a c t 

This paper proposes a method to detect the sampling rate of discrete time series of diffu- 

sion processes. Using the maximum likelihood estimates of the parameters of a diffusion 

process, we establish a criterion based on the Kullback–Leibler divergence and thereby es- 

timate the sampling rate. Simulation studies are conducted to check whether the method 

can detect the sampling rates from data and their results show a good performance in the 

detection. In addition, the method is applied to a financial time series sampled on daily 

basis and shows the detected sampling rate is different from the conventional rates. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The time evolution of stochastic dynamic phenomena is formulated by stochastic differential equations (SDE). For prac- 

tical use of these equations, we have to estimate their parameters from data. Here, we should pay our attention to the 

qualitative difference between the model formulated by an SDE and data used for estimation because the model is ex- 

pressed in the continuous time framework while the data are observed at discrete times. To bridge the difference, we have 

to develop schemes for discretization to make a model fit to data rather than obtain continuous time data because the latter 

is basically difficult due to accuracy of observation by experimental devices. Actually, there are various studies to pursue this 

idea; see, for example, [4] , [5,6,8,9] and [11] . 

It is particularly important for the discretization to determine the sampling interval of data �t , or the sampling rate 1/ �t . 

When using small �t , the discretized model of �t would show the short term behavior, whereas the model would show the 

longer time behavior when using larger �t . Conventionally, we often determine how long �t is, depending on the sampling 

frequency such as daily, monthly, or annually. This convention, however, is useless to determine the sampling interval. For 

example, suppose time series data observed every day. When using 1 day as the unit time scale, �t is equal to 1, where as 

it is equal to 1/365 when using 1 year as the unit time scale. The discretized model would show the somewhat longer time 

behavior in the former case but the short term behavior in the latter case although the data themselves are just identical. 

Moreover, from a relativistic point of view, observers in different inertial frames would observe different �t because of their 

different elapsed time even if we take no account of the unit time scale; one observer at a rest frame O observes data every 

�t , while another observer moving at velocity v relative to O observes the same data every �t ′ = �t 
√ 

1 − v 2 /c 2 for the 

speed of light c . 

Additionally, �t has a significant influence on the performance of discretization. Deriving a discretized model from an 

SDE is basically equivalent to solving the SDE. Since it is generally difficult to obtain the exact solution to such an SDE, 

especially as nonlinear stochastic differential equations, approximation methods are often used for the derivation. The per- 
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formance of the approximation is measured by the rate of convergence in �t . For example, when applying the well-known 

Euler method to SDEs, O ( �t ) is known as its rate of convergence; see [7] for example. Thus the better the performance of 

approximation the shorter �t . 

Unless running simulations, however, we are unable to take �t as short as we want. Rather, in applications we have to 

identify how long it is. Given time series, we first assume a statistical model, or a data generating process, which is thought 

to generate the time series with specific values of its parameters and �t . In parameter estimation we have main interest 

in what values those parameters have, but often do not care about what value �t is. Since the observed time series are 

assumed to follow the data generating process, the value of �t as well as the values of the parameters must be estimated 

from the time series. 

At a first glance, the estimation looks easy. However, we cannot estimate the parameters and �t simultaneously. Take 

a Brownian motion with drift for example, which are formulated by d X t = μd t + σd B t , where B t is the standard Brownian 

motion. Here, we want to estimate μ, σ , and �t from discrete time series { X t k } 1 ≤k ≤n of its time interval, t k − t k −1 = �t . To 

this end, the maximum likelihood estimation can be applied because X t k − X t k −1 
follows the normal distribution with mean 

μ�t and variance σ 2 �t . It can be easily seen that we are unable to estimate the parameters and the sampling interval 

simultaneously. Alternatively, we could estimate the parameters and the sampling interval separately as follows. Let �t be 

fixed at some value and then maximize the log-likelihood function with respect to parameters. Repeat this procedure for 

one possible sampling interval after another. Among those obtained maximized log-likelihoods, it seems that we have only 

to choose the sampling interval at which the maximized log-likelihood attains the maximum. This straightforward approach, 

however, is shown to fail to work. 

On the basis of the Kullback–Leibler divergence, this paper proposes the mean log-likelihood as criterion for the detec- 

tion. In this approach, we first estimate the parameters of an SDE via the maximum likelihood method from one discrete 

sample path given a possible sampling rate. And then, we construct a mean log-likelihood from another sample paths in- 

dependent of each other. Repeating this procedure by changing one possible sampling rate after another, we choose the 

sampling rate at which the mean log-likelihood attains the maximum. 

To check the performance of the proposed method numerically, simulation studies are conducted by using well-known 

SDEs with several combinations of sampling rates and the number of observations. In addition, we apply the method to 

financial time series sampled on daily basis and detect its sampling rate implied by the data. The analysis shows that the 

detected sampling rate is different from such rates as implied by conventionally taking 1 week, month, or year as the unit 

time scale. 

The paper is organized as follows. In Section 2 we show the maximized log-likelihood fails to work as criterion for com- 

paring sampling rates, but instead the mean log-likelihood is proposed. In Section 3 the numerical experiments are carried 

out to check the numerical performance of the proposed method. In Section 4 an empirical application to the Japanese stock 

price index is provided and the concluding remarks are given in the final section. 

2. Methods of detecting the sampling rate 

Suppose a diffusion process X t starting at x 0 satisfies the following SDE, 

dX t = μ( X t ; θ ) dt + σ ( X t ; θ ) dB t 

X 0 = x 0 , (1) 

where B t is the standard Brownian motion and μ( X t ; θ ) and σ ( X t ; θ ) represent functions of X t with an unknown parameter 

vector θ . Here, we have time series with an equidistant sampling interval, or a discrete sample path of the process { X t k } 1 ≤k ≤n 

(t k − t k −1 = τ0 ) , thereby we estimate the unknown θ . Unlike usual settings, however, we assume that we have no informa- 

tion on the physical sampling interval τ 0 or rate 1/ τ 0 although we may know those data are sampled on a daily, weekly, 

monthly, or annually basis. Those conventional sampling frequency means neither sampling interval nor rate because the 

sampling interval or rate is determined by the unit time scale which is usually unknown to experimenters. Therefore, we 

have to estimate not only the parameter vector but also the sampling interval or rate. 

In the following discussion, we focus one-dimensional diffusion processes for simplicity. Those arguments, however, can 

be easily extended to multi-variate diffusion processes. 

2.1. Maximized log-likelihood 

Here, consider the maximum likelihood (ML) method for example. Let l ( θ ) be the logarithm of the likelihood function 

for given { X t k } 1 ≤k ≤n . We get the ML estimate ˆ θ by maximizing l ( θ ) with respect to θ when the sampling interval is known. 

In our settings, however, the true sampling interval τ 0 is unknown. So, first we tentatively assign a possible value to the 

sampling interval, denoted by τ , and then carry out the maximum likelihood estimation. The estimate obtained in such a 

way depends on τ used for estimation, and thus the estimate should be expressed as a function of τ , or ˆ θ (τ ) . 

In terms of the ML method, the greater l( ̂  θ (τ )) is more desirable. Thus, it seems that we have only to choose τ which 

gives the largest l( ̂  θ (τ )) among possible sampling intervals. But, this straightforward approach fails. Consider the differential 
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