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Abstract: This work discusses the backward reachability of autonomous Max-Plus-Linear
(MPL) systems, a class of continuous-space discrete-event models that are relevant for applica-
tions dealing with synchronization and scheduling. Given an MPL system and a continuous set
of final states, we characterize and compute its “backward reach tube” and “backward reach
sets,” namely the set of states that can reach the final set within a given event interval or at a
fixed event step, respectively. We show that, in both cases, the computation can be done exactly
via manipulations of difference-bound matrices. Furthermore, we illustrate the application of
the backward reachability computations over safety and transient analysis of MPL systems.
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1. INTRODUCTION

Max-Plus-Linear (MPL) systems are discrete-event mod-
els (Baccelli et al., 1992; Hillion and Proth, 1989;
Cuninghame-Green, 1979) with a continuous state space
characterizing the timing of the underlying discrete events.
MPL systems are predisposed to describe the timing
synchronization between interleaved processes, under the
assumption that timing events are linearly dependent
(within the max-plus algebra) on previous event occur-
rences (cf. Section 2). These models are widely employed
in the analysis and scheduling of infrastructure networks,
such as communication and railway systems (Heidergott
et al., 2006), production and manufacturing lines (Roset
et al., 2005; van Eekelen et al., 2006), as well as in biolog-
ical systems (Brackley et al., 2012). They cannot model
concurrency and are related to a subclass of timed Petri
nets, namely timed-event graphs (Baccelli et al., 1992).

Reachability analysis of MPL systems from a single ini-
tial condition has been investigated in (Gazarik and Ka-
men, 1999; Gaubert and Katz, 2003), by computing the
reachability matrix as in the case of discrete-time linear
dynamical systems. It has been shown in (Gaubert and
Katz, 2006, Sec. 4.13) that the reachability problem for
autonomous MPL systems with a single initial condition
is decidable – this result however does not hold for a
general, uncountable set of initial conditions. Furthermore,
the existing literature does not deal with backward reach-
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ability analysis, which would require expressing the set of
final conditions as a max-plus convex cone (Gaubert and
Katz, 2007). Furthermore, the computation would need
the system matrix to be max-plus invertible. A matrix
is max-plus invertible iff there is a single finite element
(not equal to −∞) in each row and in each column. In
conclusion, these assumptions limit the applicability of the
approach.

In this work, we extend the state-of-the-art results in
backward reachability analysis of MPL systems by pre-
senting a computational approach that can handle state
matrices that are not max-plus invertible and further
manage problems over an arbitrary (possibly uncountable)
set of final conditions. We start by characterizing MPL
systems alternatively by Piece-wise Affine (PWA) systems,
and show that the dynamics can be fully represented by
Difference-Bound Matrices (DBM) (Dill, 1990, Sec. 4.1),
which are structures that are quite simple to manipulate
computationally. Furthermore, one can show that DBM
are closed under PWA dynamics, which leads to being
able to compute a set of states that is mapped to given
DBM-sets through an MPL system. Given a set of final
states, we then compute its “backward reach tube” and
the collection of “backward reach sets,” namely the set of
states that can arrive at the final states in any number
of steps and in a fixed number of steps, respectively. We
further describe two alternative approaches to compute
the latter quantities.

Closely related to backward reachability is the problem
of safety analysis (Mitchell, 2007): given an unsafe set
over the state space, it is of interest to determine whether
trajectories of the model enter the unsafe set – either at a
given event step, or over an events interval. If the model
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is not safe, we can seek the subset of initial conditions
leading to the unsafe set by using backward reachability
analysis.

In addition to general safety analysis, we show that back-
ward reachability is specifically helpful in the transient
analysis of MPL systems. According to the max-plus al-
gebra analogue of the Perron-Frobenius theorem (Baccelli
et al., 1992, Sec. 3.7), if the system matrix is irreducible,
there exists a periodic behavior ensuing after some event
index. The smallest of such indices is called the length
of the transient part, which is used in the literature to
characterize model performance. For example in trans-
portation networks, whenever there is a delay, the tran-
sient determines the worst-case recovery time. Moreover
in the case of link reversal routing (Gafni and Bertsekas,
1987), it is equal to the time complexity of the routing
algorithm. Hartmann and Arguelles (1999) established
an upper bound on the length of the transient part of
general MPL systems via graph-theoretical techniques.
Under the assumption of integer delays Charron-Bost et al.
(2013) employed algebraical approaches to obtain an upper
bound. In this work, we show how backward reachability
analysis can be used to determine the length of the tran-
sient part of a model (given via its system matrix), for any
desired initial state: this generalizes related results in the
literature. The set of final conditions for this backward
reachability problem is defined as the set of states with
zero length of the transient part, namely the states for
which the periodic behavior occurs immediately.

The article is structured as follows. Section 2 introduces
models and notions needed to tackle the problem at
hand. Section 3 discusses the procedure for backward
reachability analysis. Section 4 describes applications of
backward reachability in safety and transient analysis.
Finally, Section 5 presents conclusions and discusses future
work.

2. MODELS AND PRELIMINARIES

2.1 Max-Plus-Linear Systems

Define Rε, ε, and e respectively as R ∪ {ε}, −∞, and 0.
For α, β ∈ Rε, introduce the two operations:

α⊕ β = max{α, β} and α⊗ β = α+ β,

where the element ε is considered to be absorbing w.r.t.
⊗ (Baccelli et al., 1992, Definition 3.4). Given β ∈ R,
the max-algebraic power of α ∈ R is denoted by α⊗β

and corresponds to αβ in the conventional algebra. The
rules for the order of evaluation of the max-algebraic
operators correspond to those of conventional algebra:
max-algebraic power has the highest priority, and max-
algebraic multiplication has a higher precedence than max-
algebraic addition (Baccelli et al., 1992, Sec. 3.1).

The basic max-algebraic operations are extended to ma-
trices as follows. If A,B ∈ R

m×n
ε ;C ∈ R

n×p
ε ; and α ∈ Rε

[α⊗A](i, j) = α⊗A(i, j),

[A⊕B](i, j) =A(i, j)⊕B(i, j),

[A⊗ C](i, j) =

n
⊕

k=1

A(i, k)⊗ C(k, j),

for all i, j. Notice the analogy between ⊕, ⊗ and +, ×
for matrix and vector operations in conventional algebra.
Given m ∈ N, the m-th max-algebraic power of A ∈ R

n×n
ε

is denoted by A⊗m and corresponds to A ⊗ · · · ⊗ A (m
times). Notice that A⊗0 is an n-dimensional max-plus
identity matrix, i.e. the diagonal and nondiagonal elements
are e and ε, respectively. In this paper, the following
notation is adopted for reasons of convenience. A vector
with each component that is equal to 0 (resp., −∞) is also
denoted by e (resp., ε). Furthermore, for practical reasons,
the state space is taken to be R

n, which also implies that
the system matrix A has to be row-finite (cf. Definition 1).

Definition 1. (Cuninghame-Green, 1979). A max-plus ma-
trix is called regular (or row-finite) if it contains at least
one element different from ε in each row. ✷

An autonomous MPL system (Baccelli et al., 1992, Re-
mark 2.75) is defined as:

x(k) = A⊗ x(k − 1),

where A ∈ R
n×n
ε , x(k − 1) = [x1(k − 1) . . . xn(k −

1)]T ∈ R
n for k ∈ N. The independent variable k denotes

an increasing discrete-event counter, whereas the state
variable x defines the (continuous) timing of the discrete
events. Autonomous MPL systems are characterized by
deterministic dynamics, namely they are not affected by
exogenous inputs.

Related to matrix A is the notion of precedence (or com-
munication) graph and of regular (or row-finite) matrix.

Definition 2. (Baccelli et al., 1992, p. 39). The preceden-
ce graph of A ∈ R

n×n
ε , denoted by G(A), is a weighted

directed graph with vertices 1, . . . , n and arc (j, i) with
weight A(i, j) for each A(i, j) 6= ε. ✷

Example 1. Consider the following autonomous MPL sys-
tem from (Heidergott et al., 2006, Sec. 0.1), representing
the scheduling of train departures from two connected
stations i = 1, 2 (xi(k) denotes the time of the k-th
departure from station i):

x(k) =

[

2 5
3 3

]

⊗ x(k − 1), or equivalently,

[

x1(k)
x2(k)

]

=

[

max{2 + x1(k − 1), 5 + x2(k − 1)}
max{3 + x1(k − 1), 3 + x2(k − 1)}

]

.

(1)

Notice that A is a row-finite matrix. Its precedence graph
is shown in Fig. 1. ✷

The notion of irreducible matrix, to be used shortly, can
be given via that of precedence graph.

Definition 3. (Baccelli et al., 1992, Th. 2.14). A max-plus
matrix A ∈ R

n×n
ε is called irreducible if its precedence

graph G(A) is strongly connected. ✷

Recall that a directed graph is strongly connected if for
any pair of distinct vertices i, j of the graph, there exists
a path from i to j (Baccelli et al., 1992, p. 37). From a
max-algebraic perspective, a matrix A is irreducible if the
non-diagonal elements of

⊕n−1
k=1 A

⊗k are finite (not equal
to ε).
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