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a b s t r a c t 

The paper presents a novel frequency-domain interpretation of Popov criteria for absolute 

stability in Lur ́e systems by means of what we call complex scaling stability analysis. The 

complex scaling technique is developed for exponential/asymptotic stability in LTI feedback 

systems, which dispenses open-loop poles distribution, contour/locus orientation and prior 

frequency sweeping. Exploiting the technique for alternatively revealing positive realness 

of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the sug- 

gested frequency-domain stability conditions are conformable both in scalar and multivari- 

able cases, and can be implemented either graphically with locus plotting or numerically 

without; in particular, the latter is suitable as a design tool with auxiliary parameter free- 

dom. The interpretation also reveals further frequency-domain facts about Lur ́e systems. 

Numerical examples are included to illustrate the main results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Circle- and Popov-type criteria have been developed for coping with the Lur ́e problem in classes of linear dynamic 

systems subject to sector nonlinearities [1–3] . Circle criteria [4–6] follow from the Kalman–Yakubovich–Popov lemma, 

or the positive real lemma, which provide ‘quadratic’ Lyapuonv function candidates for us to verify globally exponen- 

tial/asymptotic stability against sector nonlinearities, or absolute stability, by connecting transfer function positive realness 

with input/output passivity. Passivity is a concept related to both internal and external stabilities. Also with the positivity 

and passivity theory, Popov criteria [7–9] guarantee existence of ‘quadratic plus integral of nonlinearity’ Lyapunov function 

candidates for us to cope with a class of Lur ́e systems also in term of absolute stability. Numerous criteria have been claimed 

in terms of circle- and Popov-type conditions that are graphically implementable (generally in scalar cases [10] ), whereas 

there are ones [11–15] that can be employed algebraically and geometrically; in particular, their LMI interpretation renders 

us a powerful technique [16,17] , just mentioning that LMIs are numerically tractable and thus suitable as a design tool. 

As well known, both types of criteria can be utilized for stability analysis and stabilization under a variety of Lur ́e con- 

figurations [18–21] . For example, the study in [22] is extended for fuzzy control, while those in [23–25] are devoted to 

time-delayed systems. Stability issues are considered also in discrete-time [26,27] and switched Lur ́e systems [28,29] . Re- 

cently, some interesting results are reported about circle-like stability conditions in descriptor systems subject to sector 

nonlinearities [16,17] . Sequential circle-like conditions are developed for synchronous generator stabilization in [30] . When 

discontinuous nonlinearities are concerned, some interesting results are reported in [31] . The papers of the authors in 
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[32–37] talk about observer design or fuzzy control with circle criteria, and the studies of the authors in [40,41] present 

results for multi-agents consensus with coupled nonlinearities. 

Different from circle criteria, Popov criteria are suitable in dealing with time-invariant, channel-decoupled sector nonlin- 

earities with Popov plots [38,39] (determined by the Lur ́e –Postnikov technique); in contrast, circle criteria rely directly on 

Nyquist loci. In this sense, both circle and Popov criteria are frequency-domain tools for evaluating stability robustness in 

the Lur ́e problem. Indeed, such frequency-domain expression makes it possible to exploit the frequency-domain techniques 

about stabilization and controller design in Lur ́e systems. Main difficulties when applying circle and Popov criteria include: 

(i). if used in their conventional fashion, the stability conditions must be employed in a case-by-case fashion, according to 

open-loop pole distribution (thus prior stability analysis is indispensable) and scalar/multivariable configuration; (ii). graph- 

ical plotting of frequency-domain features is unavoidable so that it is not so significant as an analytical tool; and (iii). if 

interpreting the stability conditions via LMIs, frequency-domain features are neglected largely, though LMIs are numerically 

tractable via the inner point algorithms. 

This paper re-visits the Lur ́e problem in light of Popov criteria [29,42,43] for absolute stability with what we call complex 

scaling stability loci, instead of Popov plots. This approach entails no direct stability analysis of the linear subsystems in Lur ́e 

systems [30,44] . Several complex scaling Popov criteria are summarized, which uniformly accommodate both multivariable 

and scalar cases and disregard open-loop pole distribution. Moreover, the stability conditions are implementable graphically 

with the complex scaling stability loci, or numerically involving neither locus plotting nor LMI-like inequality solving. Thus, 

the approach is highly numerically tractable in stability analysis and stabilization design with additional parameter free- 

dom. The complex scaling Popov criterion reveals also interesting frequency-domain facts about Lur ́e systems that remain 

unknown up to now; for example, frequency spectrum in terms of positive realness and sector nonlinearities, and role of 

the H ∞ 

performance for stabilizing Lur ́e systems. 

Notations: R and C represent, respectively, the set of all real or that of all complex numbers. 〈 · 〉 k denotes the k -th 

leading principal minor. det (·) means the determinant of ( · ). The degree of a polynomial θ ( s ) is meant by deg (θ (s )) . ( · ) ∗

means the conjugate transpose of ( · ). I k denotes the k × k identity matrix. λ( · ) denotes the set of all eigenvalues of ( · ). 

Outline: Section 2 lists preliminaries to the complex scaling stability analysis in the LTI setting. Section 3 interprets the 

standard Popov criterion according to the complex scaling stability loci, together with observations about the Lur ́e systems 

and their LTI embedding. Section 4 sketch numerical examples, while conclusions are given in Section 5 . 

2. Complex scaling stability criterion 

2.1. Feedback configuration and problem formulation 

Let � represent the LTI model given by 

� : 

{
˙ x = Ax + Bu 

y = Cx 
(1) 

where A ∈ R 

n ×n , B ∈ R 

n ×m , and C ∈ R 

l×n ; x ∈ R 

n is the state vector, while u ∈ R 

m and y ∈ R 

l are the input and output 

vectors, respectively. The transfer function of � is written by G (s ) = C(sI n − A ) −1 B ∈ C l×m 

Next, introduce the static output feedback u = r − Ky to (1) , where K ∈ R 

m ×l is a gain matrix and r a new input. The 

state-space equation for the closed-loop system is 

(�, K) : 

{
˙ x = [ A − BKC] x + Br 

y = Cx 
(2) 

It is said that the closed-loop system ( �, K ) is asymptotically stable, if all eigenvalues of A − BKC have negative real parts. 

To address asymptotical stability of ( �, K ), the return difference relationship is claimed as 

det (sI n − A + BKC) 

det (sI n − A ) 
= det (I m 

+ KG (s )) (3) 

By definition, det (sI n − A + BKC) and det (sI n − A ) are the closed- and open-loop characteristic polynomials, respectively. Un- 

fortunately, however, if there exists any factor cancelation between det (sI n − A ) and det (sI n − A + BKC) , only a coprime por- 

tion is left after all reducible factors are removed. In reducible cases, (3) reduces to a partial relationship between the 

closed- and open-loop characteristic polynomials so that asymptotic stability cannot be claimed rigorously. 

To address asymptotical stability of ( �, K ) even if (3) is reducible, we re-write (3) equivalently into the complex scaling 

return difference relationship 

det (sI n − A + BKC) 

θ (s ) 
= 

det (sI n − A ) 

θ (s ) 
det (I m 

+ KG (s )) (4) 

where θ ( s ) is an auxiliary Hurwitz polynomial. The closed- and open-loop characteristic polynomials are juxtaposed at the 

two sides of (4) . To facilitate our arguments, we write 

f (s ; θ, K) := 

det (sI n − A ) 

θ (s ) 
det (I m 

+ KG (s )) (5) 
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