Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier.com/locate/cnsns

Research paper

Interpreting Popov criteria in Luré systems with complex scaling stability analysis

J. Zhou

Department of Automatic Control Engineering, College of Energy and Electrical Engineering, Hohai University, Fochengxi Road, No. 8, *Nanjing 211100, China*

a r t i c l e i n f o

Article history: Received 13 June 2017 Revised 29 October 2017 Accepted 23 November 2017 Available online 2 December 2017

Keywords: Absolute stability Positive realness Luré problem Complex scaling

A B S T R A C T

The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Luré systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Luré systems. Numerical examples are included to illustrate the main results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Circle- and Popov-type criteria have been developed for coping with the Luré problem in classes of linear dynamic systems subject to sector nonlinearities $[1-3]$. Circle criteria $[4-6]$ follow from the Kalman–Yakubovich–Popov lemma, or the positive real lemma, which provide 'quadratic' Lyapuonv function candidates for us to verify globally exponential/asymptotic stability against sector nonlinearities, or absolute stability, by connecting transfer function positive realness with input/output passivity. Passivity is a concept related to both internal and external stabilities. Also with the positivity and passivity theory, Popov criteria [\[7–9\]](#page--1-0) guarantee existence of 'quadratic plus integral of nonlinearity' Lyapunov function candidates for us to cope with a class of Luré systems also in term of absolute stability. Numerous criteria have been claimed in terms of circle- and Popov-type conditions that are graphically implementable (generally in scalar cases [\[10\]\)](#page--1-0), whereas there are ones [\[11–15\]](#page--1-0) that can be employed algebraically and geometrically; in particular, their LMI interpretation renders us a powerful technique [\[16,17\],](#page--1-0) just mentioning that LMIs are numerically tractable and thus suitable as a design tool.

As well known, both types of criteria can be utilized for stability analysis and stabilization under a variety of Luré configurations [\[18–21\].](#page--1-0) For example, the study in [\[22\]](#page--1-0) is extended for fuzzy control, while those in [\[23–25\]](#page--1-0) are devoted to time-delayed systems. Stability issues are considered also in discrete-time [\[26,27\]](#page--1-0) and switched Luré systems [\[28,29\].](#page--1-0) Recently, some interesting results are reported about circle-like stability conditions in descriptor systems subject to sector nonlinearities [\[16,17\].](#page--1-0) Sequential circle-like conditions are developed for synchronous generator stabilization in [\[30\].](#page--1-0) When discontinuous nonlinearities are concerned, some interesting results are reported in [\[31\].](#page--1-0) The papers of the authors in

E-mail address: katsura@hhu.edu.cn

<https://doi.org/10.1016/j.cnsns.2017.11.029> 1007-5704/© 2017 Elsevier B.V. All rights reserved.

[\[32–37\]](#page--1-0) talk about observer design or fuzzy control with circle criteria, and the studies of the authors in [\[40,41\]](#page--1-0) present results for multi-agents consensus with coupled nonlinearities.

Different from circle criteria, Popov criteria are suitable in dealing with time-invariant, channel-decoupled sector nonlin-earities with Popov plots [\[38,39\]](#page--1-0) (determined by the Luré–Postnikov technique); in contrast, circle criteria rely directly on Nyquist loci. In this sense, both circle and Popov criteria are frequency-domain tools for evaluating stability robustness in the Luré problem. Indeed, such frequency-domain expression makes it possible to exploit the frequency-domain techniques about stabilization and controller design in Luré systems. Main difficulties when applying circle and Popov criteria include: (i). if used in their conventional fashion, the stability conditions must be employed in a case-by-case fashion, according to open-loop pole distribution (thus prior stability analysis is indispensable) and scalar/multivariable configuration; (ii). graphical plotting of frequency-domain features is unavoidable so that it is not so significant as an analytical tool; and (iii). if interpreting the stability conditions via LMIs, frequency-domain features are neglected largely, though LMIs are numerically tractable via the inner point algorithms.

This paper re-visits the Luré problem in light of Popov criteria $[29,42,43]$ for absolute stability with what we call complex scaling stability loci, instead of Popov plots. This approach entails no direct stability analysis of the linear subsystems in Lure´ systems [\[30,44\].](#page--1-0) Several complex scaling Popov criteria are summarized, which uniformly accommodate both multivariable and scalar cases and disregard open-loop pole distribution. Moreover, the stability conditions are implementable graphically with the complex scaling stability loci, or numerically involving neither locus plotting nor LMI-like inequality solving. Thus, the approach is highly numerically tractable in stability analysis and stabilization design with additional parameter freedom. The complex scaling Popov criterion reveals also interesting frequency-domain facts about Luré systems that remain unknown up to now; for example, frequency spectrum in terms of positive realness and sector nonlinearities, and role of the H_{∞} performance for stabilizing Luré systems.

Notations: $\mathcal R$ and $\mathcal C$ represent, respectively, the set of all real or that of all complex numbers. $\langle \cdot \rangle_k$ denotes the *k*-th leading principal minor. det(·) means the determinant of (·). The degree of a polynomial $\theta(s)$ is meant by deg($\theta(s)$). (·)^{*} means the conjugate transpose of (\cdot) . *I_k* denotes the $k \times k$ identity matrix. $\lambda(\cdot)$ denotes the set of all eigenvalues of (\cdot) .

Outline: Section 2 lists preliminaries to the complex scaling stability analysis in the LTI setting. [Section](#page--1-0) 3 interprets the standard Popov criterion according to the complex scaling stability loci, together with observations about the Luré systems and their LTI embedding. [Section](#page--1-0) 4 sketch numerical examples, while conclusions are given in [Section](#page--1-0) 5.

2. Complex scaling stability criterion

2.1. Feedback configuration and problem formulation

Let Σ represent the LTI model given by

$$
\Sigma: \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \tag{1}
$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{l \times n}$; $x \in \mathbb{R}^n$ is the state vector, while $u \in \mathbb{R}^m$ and $y \in \mathbb{R}^l$ are the input and output vectors, respectively. The transfer function of Σ is written by $G(s) = C(sI_n - A)^{-1}B \in C^{l \times m}$

Next, introduce the static output feedback $u = r - Ky$ to (1), where $K \in \mathbb{R}^{m \times l}$ is a gain matrix and *r* a new input. The state-space equation for the closed-loop system is

$$
(\Sigma, K) : \begin{cases} \dot{x} = [A - BKC]x + Br \\ y = Cx \end{cases}
$$
 (2)

It is said that the closed-loop system (Σ, K) is asymptotically stable, if all eigenvalues of *A* − *BKC* have negative real parts. To address asymptotical stability of (Σ, K) , the return difference relationship is claimed as

$$
\frac{\det(sI_n - A + BKC)}{\det(sI_n - A)} = \det(I_m + KG(s))
$$
\n(3)

By definition, det(*sIn* − *A* + *BKC*) and det(*sIn* − *A*) are the closed- and open-loop characteristic polynomials, respectively. Unfortunately, however, if there exists any factor cancelation between det(*sIn* − *A*) and det(*sIn* − *A* + *BKC*), only a coprime portion is left after all reducible factors are removed. In reducible cases, (3) reduces to a partial relationship between the closed- and open-loop characteristic polynomials so that asymptotic stability cannot be claimed rigorously.

To address asymptotical stability of (Σ, K) even if (3) is reducible, we re-write (3) equivalently into the complex scaling return difference relationship

$$
\frac{\det(sI_n - A + BKC)}{\theta(s)} = \frac{\det(sI_n - A)}{\theta(s)} \det(I_m + KG(s))
$$
\n(4)

where θ(*s*) is an auxiliary Hurwitz polynomial. The closed- and open-loop characteristic polynomials are juxtaposed at the two sides of (4). To facilitate our arguments, we write

$$
f(s; \theta, K) := \frac{\det(sI_n - A)}{\theta(s)} \det(I_m + KG(s))
$$
\n(5)

Download English Version:

<https://daneshyari.com/en/article/7154787>

Download Persian Version:

<https://daneshyari.com/article/7154787>

[Daneshyari.com](https://daneshyari.com)