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Abstract: We consider the tra¢ c light control problem for a single intersection modeled as a
stochastic hybrid system. We study a quasi-dynamic policy based on partial state information
de�ned by detecting whether vehicle backlogs are above or below certain controllable thresholds.
Using In�nitesimal Perturbation Analysis (IPA), we derive online gradient estimators of a cost
metric with respect to these threshold parameters and use these estimators to iteratively adjust
the threshold values through a standard gradient-based algorithm so as to improve overall system
performance under various tra¢ c conditions. Results obtained by applying this methodology to
a simulated urban setting are also included.
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1. INTRODUCTION

The Tra¢ c Light Control (TLC) problem consists of ad-
justing green and red light cycles in order to control the
tra¢ c �ow through an intersection and, more generally,
through a set of intersections and tra¢ c lights. The ul-
timate objective is to minimize congestion (hence delays
experienced by drivers) at a particular intersection, as
well as an entire area consisting of multiple intersections
with tra¢ c lights. Recent technological developments have
made it possible to collect and process tra¢ c data so that
they may be applied in solving the TLC problem in real
time. Fundamentally, TLC is a form of scheduling for sys-
tems operating through simple switching control actions,
and several di¤erent types of optimization formulations,
along with their corresponding solution algorithms, have
been proposed for it (the reader is referred to [Geng and
Cassandras (2012)] for a review of existing algorithms).
Perturbation analysis techniques were used by Head et
al. (1996) and Fu and Howell (2003) for modeling a
tra¢ c light intersection as a stochastic Discrete Event Sys-
tem (DES), while an In�nitesimal Perturbation Analysis
(IPA) approach, using a Stochastic Flow Model (SFM)
to represent the queue content dynamics of roads at an
intersection, was presented in [Panayiotou et al. (2005)].

Our work is also based on modeling tra¢ c �ow through
an intersection controlled by switching tra¢ c lights as an
SFM, which conveniently captures the system�s inherent
hybrid nature: while tra¢ c light switches exhibit event-
driven dynamics, the �ow of vehicles through an inter-
section is best represented through time-driven dynamics.
In [Geng and Cassandras (2012)], IPA was applied with
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respect to controllable green and red cycle lengths for a
single isolated intersection and in [Geng and Cassandras
(2013a)] for multiple intersections. Tra¢ c �ow rates need
not be restricted to take on deterministic values, but may
be treated as stochastic processes (see [Cassandras et al.
(2002)]), which are suited to represent the continuous and
random variations in tra¢ c conditions. Using the general
IPA theory for Stochastic Hybrid Systems (SHS) in [Wardi
et al. (2010)] and [Cassandras et al. (2010)], on-line gradi-
ents of performance measures are estimated with respect to
several controllable parameters with only minor technical
conditions imposed on the random processes that de�ne
input and output �ows. These IPA estimates have been
shown to be unbiased, even in the presence of blocking
due to limited resource capacities and of feedback control
(see [Yao and Cassandras (2011)]).

In contrast to earlier work where the adjustment of light
cycles did not make use of real-time state information,
Geng and Cassandras (2013b) proposed a quasi-dynamic
control setting in which partial state information is used
conditioned upon a given queue content threshold being
reached. In this paper, we draw upon this setting, but
rather than controlling the light cycle lengths as in [Geng
and Cassandras (2013b)], here we focus on the threshold
parameters and derive IPA performance measure estima-
tors necessary to optimize these parameters, while assum-
ing �xed cycle lengths. Our goal is to compare the relative
e¤ects of the threshold parameters and the light cycle
length parameters on our objective function, build upon
these results, and ultimately control both the light cycle
lengths and the queue content thresholds simultaneously.

In Section 2, we formulate the TLC problem for a single
intersection. Section 3 details the derivation of an IPA
estimator for the cost function gradient with respect to a
controllable parameter vector de�ned by these thresholds.
The IPA estimator is then incorporated into a gradient-
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Fig. 1. A single tra¢ c light intersection with two cross-
roads

based optimization algorithm and we include simulation
results in Section 4.

2. PROBLEM FORMULATION

The system we consider comprises a single intersection,
as shown in Fig. 1. For simplicity, left-turn and right-
turn tra¢ c �ows are not considered and yellow light cycles
are implicitly accounted for within a red light cycle. We
assign to each queue i a guaranteed minimum GREEN
cycle length �i;min, and a maximum length �i;max which
(in contrast to [Geng and Cassandras (2013b)]) we assume
to be �xed. We de�ne a state vector x(t) = [x1(t); x2(t)]
where xi(t) 2 R+ is the content of queue i. For each
queue i, we also de�ne a �clock� state variable zi(t),
i = 1; 2, which measures the time since the last switch
from RED to GREEN of the tra¢ c light for queue i,
so that zi(t) 2 [0; �i;max]. Setting z(t) = [z1(t); z2(t)],
the complete system state vector is [x(t); z(t)]. Within
the quasi-dynamic setting considered in this work, the
controllable parameter vector of interest is given by s =
[s1; s2], where sn 2 <+ is a queue content threshold value
for road n = 1; 2. The notation x(s; t) = [x1(s; t); x2(s; t)]
is used to stress the dependence of the state on these
threshold parameters. However, for notational simplicity,
we will henceforth write x(t) when no confusion arises; the
same applies to z(t).

Let us now partition the queue content state space into
the following four regions: X0 = f(x1; x2) : x1(t) < s1;
x2(t) < s2g; X1 = f(x1; x2) : x1(t) < s1; x2(t) � s2g;
X2 = f(x1; x2) : x1(t) � s1; x2(t) < s2g; X3 = f(x1; x2) :
x1(t) � s1; x2(t) � s2g. At any time t, the feasible control
set for the tra¢ c light controller is U = f1; 2g and the
control is de�ned as:

u (x(t); z(t)) �
�
1
2
i.e., set road 1 GREEN, road 2 RED
i.e., set road 2 GREEN, road 1 RED

(1)
A dynamic controller is one that makes full use of the
state information z(t) and x(t). Obviously, z(t) is the
controller�s known internal state, but the queue content
state is generally not observable. We assume, however, that
it is partially observable. Speci�cally, we can only observe
whether xi(t) is below or above some threshold si; i = 1; 2
(this is consistent with actual tra¢ c systems where sensors
(typically, inductive loop detectors) are installed at each
road near the intersection). In this context, we shall de�ne
a quasi-dynamic controller of the form u (X(t); z(t)), with
X(t) 2 fX0; X1; X2; X3g, as follows:
For X(t) 2 fX0; X3g:

u (z(t)) =

�
1
2
if z1(t) 2 (0; �1;max) and z2(t) = 0
otherwise (2)

For X(t) = X1:

u (z(t)) =

�
1
2
if z1(t) 2 (0; �1;min) and z2(t) = 0
otherwise (3)

For X(t) = X2:

u (z(t)) =

�
2
1
if z2(t) 2 (0; �2;min) and z1(t) = 0
otherwise (4)

This is a simple form of hysteresis control to ensure that
the ith tra¢ c �ow always receives a minimum GREEN
light cycle �i;min. Clearly, the GREEN light cycle may
be dynamically interrupted anytime after �i;min based on
the partial state feedback provided through X(t). For
notational simplicity, we will write u(t) when no confusion
arises, as we do with x(t), z(t):

The stochastic processes involved in this system are de-
�ned on a common probability space (
; F; P ). The arrival
�ow processes are f�n(t)g, n = 1; 2, where �n(t) is the
instantaneous vehicle arrival rate at time t. The departure
�ow process on road n is de�ned as:

�n(t) =

(
hn(X(t); z(t); t)
�n(t)
0

if xn(t) > 0 and u(t) = n
if xn(t) = 0 and u(t) = n
otherwise

(5)
where hn(X(t); z(t); t) is the instantaneous vehicle depar-
ture rate at time t; for notational simplicity, we will write
hn(t) when no confusion arises. We can now write the
dynamics of the state variables xn(t) and zn(t) as follows,
where we adopt the notation n to denote the index of
the road perpendicular to road n = 1; 2, and note that
the symbols t+ (t�, respectively) denote the time instant
immediately following (preceding, respectively) time t:

�
xn(t) =

(
�n(t)
0
�n(t)� hn(t)

if zn(t) = 0
if xn(t) = 0 and �n(t) � hn(t)
otherwise

(6)
�
zn(t) =

�
1
0
if zn(t) = 0
otherwise (7)

zn(t
+) = 0 if zn(t) = �n;max

or zn(t) = �n;min; xn(t) < sn; xn(t) � sn
or zn(t) > �n;min; xn(t�) > sn; xn(t+) = sn; xn(t) � sn
or zn(t) > �n;min; xn(t) < sn; xn(t�) < sn; xn(t+) = sn

In this context, the tra¢ c light intersection in Fig. 1 can
be viewed as a hybrid system in which the time-driven dy-
namics are given by (6)-(7) and the event-driven dynamics
are associated with light switches and with events that
cause the value of xn(t) to change from strictly positive to
zero or vice-versa. It is then possible to derive a Stochastic
Hybrid Automaton (SHA) model as in [Geng and Cas-
sandras (2013b)] containing 14 modes, which are de�ned
by combinations of xn(t) and zn(t) values. The event set
for this SHA is �n = fe1; e2; e3; e4; e5; e6; e7g, where e1 is
the guard condition [xn = sn from below]; e2 is the guard
condition [xn = sn from above]; e3 is the guard condition
[zn = �n;min]; e4 is the guard condition [zn = �n;max]; e5
is the guard condition [xn = 0 from above]; e6 is a switch
in the sign of �n(t) � hn(t) from non-positive to strictly
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