
Performance Regulation via Integral
Control in a Class of Stochastic Discrete

Event Dynamic Systems

C. Seatzu ∗ Y. Wardi ∗∗

∗Department of Electrical and Electronic Engineering,
University of Cagliari, Italy

(e-mail: seatzu @ diee.unica.it).
∗∗ School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, USA

(e-mail: ywardi@ece.gatech.edu).

Abstract: This paper presents a performance-regulation method for a class of Discrete Event
Dynamic Systems (DEDS). The main idea is to use an integral controller with a variable gain,
adaptively computed so as to guarantee effective output-tracking of a given reference value. The
computation of the gain is based on the Infinitesimal Perturbation Analysis (IPA) gradient of the
plant function with respect to the control variable, and the resultant tracking can be quite robust
with respect to modeling inaccuracies and gradient-estimation errors. The proposed technique
is tested on two examples concerning the regulation of the loss rate in a queue, and of inventory
levels in a manufacturing-system represented by a Petri net. The results suggest its potential
efficacy for a broader class of DEDS.
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1. INTRODUCTION

Infinitesimal Perturbation Analysis (IPA) has been ex-
tensively applied to compute sample-path gradients of
performance functions, defined on the state space of Dis-
crete Event Dynamic Systems (DEDS), as functions of
continuous parameters. Its main use so far has been in
optimization of expected-value performance functions in
conjunction with stochastic approximation algorithms. For
extensive presentations of the IPA technique and its ap-
plications, please see Ho (1991); Glasserman (1991); Cas-
sandras and Lafortune (1999) and references therein.

Recently IPA has been extended from DEDS to a class of
stochastic hybrid systems, based on the Stochastic Flow
Model (SFM) framework (see Cassandras et al. (2010);
Wardi et al. (2010); Yao and Cassandras (2013); Wardi
and Cassandras (2013) for recent surveys). The SFM
paradigm, comprising a generalization of fluid queues, has
several inherent features rendering it especially suitable
to the application of IPA. In particular, IPA gradients
in the setting of SFM are statistically unbiased in a far-
larger class of systems than those in the setting of DEDS,
and they often admit simple, model-free formulas and
algorithms. Furthermore, in situations where an SFM acts
as an abstraction of a DEDS, the SFM-based IPA gra-
dients can provide sensitivity estimates of expected-value
performance functions defined on the DEDS, which DEDS-
related IPA gradients fail to yield. An additional feature of
IPA in the SFM setting is that convergence to local minima
� Research of the second author was supported in part by the NSF
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of stochastic approximation algorithms exhibit consider-
able robustness to gradient-estimation errors; see Cassan-
dras et al. (2002); Sun et al. (2004); Cassandras (2006);
Panayiotou and Cassandras (2006); Yao and Cassandras
(2013) for simulation results, and Wardi and Cassandras
(2013a) for an initial analysis.

This paper leverages on the aforementioned results to
propose a role for IPA in applications beyond optimization,
namely in performance regulation of DEDS. In the sce-
nario that we examine, a given reference performance value
has to be maintained in the face of unpredictable factors
such as system-modeling inaccuracies, input variations,
changes in the system’s characteristics, and the effects
of noise. This can be achieved with a suitable feedback
control law having an integrator in the loop. However, an
integral control may result in inadequate stability margins
or large output oscillations. Moreover, a controller with
a fixed gain may yield inadequate performance under
changing system’s characteristics. To get around these
difficulties we propose an integrator with a time-varying
gain, adaptively computed in a way that (for a class of
systems) broadens the stability margins and yields a faster
tracking of the reference input than fixed-gain integral
controllers.

To set the stage for our problem, consider a stochastic
timed DEDS defined over a probability space (Ω,F , P ),
suppose that its state variable evolves in a way that
depends on a continuous parameter θ ∈ R, and hence
denoted by x(θ, t). We view x(θ, t) as a realization of
a random process defined on the underlying probability
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space, and dependent on a sample ω ∈ Ω. Let us parti-
tion the positive-time axis into a sequence of contiguous
intervals, or cycles, Cn, n = 1, 2, . . ., and denote their
respective lengths by Tn, n = 1, 2, . . .. Thus, C1 = [0, T1),
C2 = [T1, T1 + T2), etc. Furthermore, let Ln(θ) be a
random function dependent on the state evolution during
the nth cycle Cn. Given a performance reference r, we are
concerned with regulating the process Ln(θ), n = 1, 2, . . .,
so that it approaches the value of r.

For example, consider a stable GI/G/1 queue whose
service-time processes depend on a parameter θ. Given
T > 0, let Ln(θ) be the mean delay of jobs that arrive
during the cycle Cn := [(n − 1)T, nT ). The queue’s pro-
cesses can be reset in various ways (or none at all) at the
start of Cn, but that is not the point. We are concerned
with regulating the functions Ln to a given reference value.

Generally, we consider successive realizations of the func-
tions Ln(θ) as the output sequence of a nonlinear, time-
varying system whose input is θ. Time is discrete and
indicated by the counter n, and the time-variablity is due
to the sample path and the boundary condition (state)
at the starting time of Cn. Furthermore, notwithstanding
the fact that the state evolution during Cn is inherently
dynamic, we can view the system as memoryless by fo-
cusing merely on its input–output (θ–Ln(θ)) relations.
This setting is natural for the forthcoming discussion of
the integral controller that we consider. We will set the
gain of the integrator during Cn to the inverse of the IPA
derivative L′n−1(θ), computed during the previous cycle,
Cn−1. As will be explained in the sequel, the control law
defined in this way yields effective regulation.

The rest of the paper is structured as follows. Section 2
describes the control system in an abstract setting, Section
3 provides a queueing example, and Section 4 presents a
simulation example of balancing inventory and backorder
in a Petri-net model of a manufacturing system. Section 5
concludes the paper and discusses potential extensions of
the results derived therein.

2. REGULATION FRAMEWORK

Consider the discrete-time feedback system shown in Fig-
ure 1, where the counter n = 1, 2, . . ., represents time. Both
plant and controller are assumed to be single-input-single-
output subsystems so that all the signals indicated in the
figure are one-dimensional. Note that we use the unusual
notation θn for the input to the plant, but it is common
in the setting of IPA, which will be used to compute the
sample gradients of performance functions with respect to
θn.
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Fig. 1. Basic regulation system

Suppose that the plant is a nonlinear, memoryless, time-
varying system represented by the functional relation yn =

Ln(θn), where the function Ln : R → R is assumed to be
continuous in θ. The purpose of the feedback system is
to have the output signal yn asymptotically track a given
reference value r.

To achieve such tracking, it is natural to have the controller
contain an integrator. In its simplest form, an integral con-
troller is a linear, time-invariant system with the transfer
function

Gc(z) = A
z−1

1− z−1
, (1)

for a given gain A > 0, whose time-domain realization is
defined by the equation θn = θn−1 + Aen−1. However, a
fixed-gain system may have the following two drawbacks.
First, generally an integrator may result in a limited
stability margin, and second, it may be impossible to
determine a single gain which is adequate for every possible
variation in the plant’s characteristics. For these reasons
we explore a variable gain, An, n = 1, 2, . . ., so that the
closed-loop system is defined by the following equations:

θn = θn−1 +Anen−1, (2)

yn = Ln(θn), (3)

and
en = r − yn. (4)

The gains An are computed adaptively according to the
action of the system on the previous control variable,
θn−1. An effective choice for An (for reasons that will

become clear shortly) is An =
(
L′n(θn−1)

)−1
, where

“prime” denotes derivative with respect to θ. However, this
computation may not be exact, and only an approximation

could be obtained. Thus, defining Kn :=
(
L′n(θn−1)

)−1
,

An has the form

An = Kn +ΔKn. (5)

Note that the computation of the last four equations is
recursive if it is made in the order (5)-(2)-(3)-(4).

Consider now the simple scenario where the plant is time
invariant and the computation of Kn is exact, namely
Ln(θ) = L(θ) is independent of n, and An = Kn in
Equation (5). Then it can be seen that the system imple-
ments Newton’s method for solving the equation L(θ) = r,
for which there are well-known results guaranteeing that
limn→∞ en = 0 (and hence limn→∞ yn = r). This limit
also is satisfied under the time-invariance assumption with
inexact computation of Kn in (5) as long as the relative
error is less than γ for a γ ∈ (0, 1), namely, |ΔKn| ≤ γ|Kn|
for every θn−1. Going a step further, suppose now that the
plant is time varying in the sense that the functions Ln(θ)
depend on n. In that case we cannot expect the error signal
to converge to 0, but rather, to within a tolerance about 0
whose magnitude is a measure of the system’s variability.
In fact, Almoosa et al. (2012) showed that (under certain
assumptions) for every ε > 0 there exists δ > 0 such that,
if

|Ln(θn−1)− Ln−1(θn−1)| < δ (6)

for all n, then
lim sup
n→∞

|en| < ε. (7)

An important practical issue in a given control applica-
tion is to compute the gain An in real time. This was
addressed in Almoosa et al. (2012,a) for regulating power
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