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Abstract: This paper presents a local modular approach which reduces computational efforts
in the synthesis of supervisors for timed discrete-event systems. We exploit the modularity
commonly inherent to large scale systems, constructing local models that comprise only those
parts of the system affected by the given specifications. Modular supervisors are then designed
over these local models, and conditions are presented under which their concurrent action
achieves nonblocking optimal global behavior.
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1. INTRODUCTION

State explosion is a recurrent problem concerning the
modelling of large scale Discrete-Event Systems (DES). A
consequence of this problem is the complexity of comput-
ing controllers for such systems. In the Ramadge-Wonham
(RW) supervisory control framework — Ramadge and
Wonham (1987) — the model of the plant to be con-
trolled is commonly obtained through the composition of
several automata, and its size grows exponentially with
the number of components. This poses an obstacle for
the synthesis of supervisors in many applications, motivat-
ing efforts to overcome such difficulties. In Wonham and
Ramadge (1988), a modular approach is presented which
allows global optimality to be achieved by the independent
synthesis of multiple supervisors, one for each different
specification. In Queiroz and Cury (2000, 2002), this strat-
egy is enhanced by taking advantage of the modularity of
the system, whose global behavior results from the shuffle
product of smaller subsystems. Local plants are obtained
by composing only those subsystems affected by each spec-
ification, so that supervisors may be synthesized locally,
i. e., considering only the corresponding local model.

In the context of Timed Discrete-Event Systems (TDES),
the consideration of an extra event representing the pas-
sage of time may cause a dramatic increase in the size
of the models, further aggravating the issue of state ex-
plosion. In Brandin and Wonham (1994, 1993), the RW
supervisory control techniques are extended to TDES.
In Saadatpoor and Wonham (2007), a state based syn-
thesis approach for timed supervisors using binary deci-
sion diagrams (BDD) is proposed. Although supervisors
are synthesized in a centralized way, exploiting structural
information for a proper BDD representation may signifi-
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cantly reduce computational effort. In Zhang et al. (2013),
supervisor localization is extended to the timed context;
this approach is yet to be combined with a modular strat-
egy so as to be suitable for large scale TDES.

In Brandin and Wonham (1993), the results on decentral-
ized supervisory control from Lin and Wonham (1988) are
extended to the timed context, yielding the so-called mod-
ular supervision of TDES under partial observation. It con-
sists in a top-down approach, starting from a global model
of the system and building local subplants by projection of
the global behavior onto subalphabets. With each subplant
is associated a specification to be implemented by a local
supervisor, whose success at the global level depends on
the property of normality. The overall computational effort
required for the design of such supervisors is generally
greater in comparison with equivalent centralized designs.

In this paper, we extend the local modular supervisory
control from Queiroz and Cury (2000) to the timed con-
text. The system’s global model is again seen as the com-
position of smaller subsystems, which in this case are quasi
independent, being synchronized only by a common global
clock. Instead of obtaining local models by projection of
the global behavior, in our bottom-up approach a local
plant is built for each specification by the synchronous
composition of only the affected subsystems. Modular su-
pervisors are then synthesized considering just the local
plants. The global model of the plant is not required
to be computed during the synthesis procedure, and the
property of normality is not regarded, being guaranteed
by construction. Sufficient conditions are established for
the absence of blocking as well as for global optimality.

2. PRELIMINARIES

In this section, some preliminary definitions and results are
presented. For a more detailed discussion on the theory
of TDES, please refer to Brandin and Wonham (1994)
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or Wonham (July 2013). Some prior knowledge about
the supervisory control of untimed DES is assumed. See
Ramadge and Wonham (1987) and Wonham and Ramadge
(1988) for the seminal work on the subject.

2.1 Languages

An alphabet Σ is a finite, nonempty set of symbols. A string
s is a finite sequence of such symbols. The empty string is
denoted by ε. Σ+ denotes the set of all nonempty strings
formed by elements of Σ, and Σ∗ = Σ+∪{ε}. Given strings
s, u ∈ Σ∗, u is said to be a prefix of s in case ∃v ∈ Σ∗ | s =
uv. A language L over Σ is any subset of Σ∗. The prefix-
closure of L is defined as L = {u ∈ Σ∗ | ∃v ∈ Σ∗, uv ∈ L}.
For each s ∈ L define the set ΣL(s) = {σ ∈ Σ | sσ ∈ L}.
For alphabets Σi ⊂ Σ, the natural projection Pi : Σ∗ → Σ∗i
is defined, ∀σ ∈ Σ and ∀s ∈ Σ∗, by

Pi(ε) = ε ;

Pi(sσ) =

{
Pi(s) if σ /∈ Σi ,
Pi(s)σ if σ ∈ Σi .

The definition can be extended to languages, with Pi :
2Σ∗ → 2Σ∗

i and P−1
i : 2Σ∗

i → 2Σ∗
given by

Pi(L) = {si ∈ Σ∗i | ∃s ∈ L,Pi(s) = si} ;

P−1
i (Li) = {s ∈ Σ∗ | Pi(s) ∈ Li} .

Given a collection of languages Li, i ∈ {1, . . . , n}, their
synchronous product is defined as

n

||
i=1

Li =

n⋂
i=1

P−1
i (Li) .

2.2 Timed Discrete-Event Systems

As in Brandin and Wonham (1994), let a TDES be mod-
elled by a finite-state automaton G = (Q,Σ, δ, q0, Qm),
with closed behavior L(G) = {s ∈ Σ∗ | ∃q ∈ Q, δ(q0, s) =
q} and marked behavior Lm(G) = {s ∈ Σ∗ | ∃q ∈
Qm, δ(q0, s) = q}. Time in the system is measured with a
global digital clock, and an event tick is introduced which
represents the passing of one unit of clock time. The event
set is then given by Σ = Σact ∪̇ {tick}, where Σact consists
of the “regular” events of the system. Each element of Σact

is equipped with a lower time bound `σ ∈ N and an upper
time bound uσ ∈ N ∪ {∞}, representing, respectively, the
minimum and maximum delays before an event occurs.
The set Σact is partitioned as Σact = Σrem ∪̇Σspe, where
Σrem = {σ ∈ Σact |uσ = ∞} is the set of remote events
and Σspe = {σ ∈ Σact |uσ < ∞} is the set of prospective
events. Any event σ ∈ Σact can occur provided it remains
enabled during at least `σ occurrences of tick. A remote
event may stay enabled indefinitely without occurring. A
prospective event, on the other hand, becomes imminent
if it remains enabled for uσ units of time; it then must
occur (or be disabled) before the next tick of the clock.

For brevity, we shall write ΣG(s) = ΣL(G)(s) for the set
of eligible events in G upon the occurrence of string s.
Equivalently, ΣG(q) denotes the set of eligible events in
state q ∈ Q.

Remark 1: Recall from Brandin and Wonham (1994) that,
for the sake of physical plausibility, a TDES G must be
activity-loop-free (ALF), that is,

∀q ∈ Q, s ∈ Σ+
act ⇒ δ(q, s) 6= q .

Violating such a condition would imply allowing for the
unrealistic possibility that a sequence of events is repeated
indefinitely without any occurrence of tick, i. e., within a
unit time interval. Furthermore, by definition, if ΣG(s) ∩
Σact = ∅ for some s ∈ L(G), then tick ∈ ΣG(s). This,
combined with the ALF condition and with the fact that
Q is a finite set, means that the clock of the system never
stops, which can be formally stated as

∀s ∈ L(G),∃u ∈ Σ∗ |ΣG(su) = {tick} .

Remark 2: As highlighted in Lin and Wonham (1995), if
no tick is possible in G after a string s, then there must be
at least one prospective event eligible (in fact, imminent)
after s. According to Remark 1, there can be at most a
finite string of events following s before the tick is enabled.
To summarize, one can conclude that

∀s ∈ L(G), tick /∈ ΣG(s) ⇒ ∃x ∈ Σ+
spe

∣∣ sx ∈ L(G)

& tick ∈ ΣG(sx) .

It will be useful to bear in mind that a TDES G is con-
structed from an activity generator Gact (with alphabet
Σact) and the aforementioned time bounds on events —
see Brandin and Wonham (1994) for details. So, G can
be graphically represented by both its activity transition
graph (ATG), namely the transition graph of Gact, and
its timed transition graph (TTG), which is the ordinary
transition graph of G (with the explicit display of tick).

2.3 Composition of TDES

We first review the definition of synchronous composi-
tion of automata. The accessible part of an automaton
A = (Q,Σ, δ, q0, Qm), denoted Ac(A), is obtained by
eliminating all of its unreachable states, i. e., by replac-
ing Q with Qac = {q ∈ Q | ∃s ∈ Σ∗, δ(q0, s) = q}.
For any two automata A1 = (Q1,Σ1, δ1, q10

, Q1m) and
A2 = (Q2,Σ2, δ2, q20

, Q2m), we have

A1||A2 = Ac
(
Q1×Q2,Σ1 ∪Σ2, δ12, (q10

, q20
), Q1m×Q2m

)
,

with δ12 defined as follows. Given q = (q1, q2) ∈ Q1 × Q2

and σ ∈ Σ1 ∪ Σ2, δ12(q, σ) is equal to
(
δ1(q1, σ), δ2(q2, σ)

)
if σ ∈ ΣG1

(q1) ∩ ΣG2
(q2) ;(

δ1(q1, σ), q2

)
if σ ∈ ΣG1(q1)− Σ2 ;(

q1, δ2(q2, σ)
)

if σ ∈ ΣG2
(q2)− Σ1 ;

undefined otherwise .

This way, one has L(A1 ||A2) = L(A1) ||L(A2) and
Lm(A1 ||A2) = Lm(A1) ||Lm(A2). Please notice that,
here and throughout the paper, the symbol || is used to
denote both the synchronous product of languages and
the synchronous composition of automata, the distinction
being clear from the context.

Secondly, let us recall from Brandin and Wonham (1994)
the composition operation comp, defined as follows. Given
two TDES G1 and G2, G = comp(G1,G2) is a TDES so
that Gact = G1act ||G2act . The time bounds on the events
of G are determined by the following rule: if σ ∈ (Σ1act −
Σ2act) or σ ∈ (Σ2act−Σ1act), `σ and uσ remain unchanged;
otherwise, if σ ∈ Σ1act ∩ Σ2act , then `σ = max{`1σ , `2σ}
and uσ = min{u1σ , u2σ}, provided `σ ≤ uσ. In case
the latter rule is violated for any σ, the composition is
considered undefined.
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