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a b s t r a c t 

In this work, we investigate the dynamics in a ring of identical Stuart–Landau oscillators 

with conjugate coupling systematically. We analyze the stability of the amplitude death 

and find the stability independent of the number of oscillators. When the amplitude death 

state is unstable, a large number of states such as homogeneous oscillation death, hetero- 

geneous oscillation death, homogeneous oscillation, and wave propagations are found and 

they may coexist. We also find that all of these states are related to the unstable spatial 

modes to the amplitude death state. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Pattern formation in nonequilibrium systems is always a hot subject in diverse extended systems. Generally, patterns 

can arise from the instability of an equilibrium state [1] . Depending on the instability, the patterns may be stationary or 

oscillatory in time and homogeneous or structured in space. Coupled nonlinear oscillators may provide a platform for the 

investigation on pattern formation. 

Coupled nonlinear oscillators also provide a platform for investigating collective behaviors in physical, chemical and bio- 

logical systems [2–4] such as oscillation quenching, synchronization, and others. There are two types of oscillation quench- 

ing, amplitude death (AD) and oscillation death (OD). Generally, AD is a complete cessation of oscillations, which refers to a 

situation where coupled oscillators cease to oscillate and go to an equilibrium solution, the origin of the system [6,7] . TAD 

state may be induced by several different ways such as a large mismatch of the oscillator frequencies [7,8] , or the existence 

of time delay in the coupling [9–12] , and the coupling of identical oscillators through dissimilar (or conjugate) variables 

[13–15] . On the other hand, OD, which has been actively studied recently [5,6,16] , is thought to have a significantly different 

background of the occurrence compared to AD. OD phenomenon is believed as a result of the system’s symmetry breaking 

and is manifested as a stabilized inhomogeneous steady state [16] . 

In coupled nonlinear oscillators, oscillators always interact with each other through the same variables. However, cou- 

pling via dissimilar variables is also natural in real situations [17,18] and this type of coupling is called conjugate coupling. 

Kim and Roy conducted coupled-semiconductor-laser experiments [19] , where the photon intensity fluctuation from one 

laser was used to modulate the injection current of the other, and vice versa. Singla et al. designed an setup consisting of 
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two Chua circuits with conjugate coupling [20] and explored the dynamics both experimentally and theoretically. Addition- 

ally, the conjugate coupled Chua circuits can be generalized to consist of a large number of units in a straightforward way. 

The investigation on the dynamics in conjugate coupled oscillators concerned with amplitude death, synchronization, and 

so on have been done in some recent literatures [21–24] . 

In this work, we consider the AD state in N identical Stuart–Landau oscillators with the conjugate coupling and inves- 

tigate the pattern formation when the AD state becomes unstable. The model with N = 2 has been employed by Karnatak 

et al. to demonstrate that the AD state can be realized in coupled identical oscillators [13] . Here, we consider arbitrary N . 

We systematically analyze the stability of the AD state and find that the stability of the AD state is independent of N . Large 

numbers of states such as homogeneous OD state, heterogeneous OD states, homogeneous oscillation, and wave propaga- 

tions are found when the AD state is unstable. Interestingly, different states may coexist. Furthermore, we find that these 

states originate from different the unstable spatial modes of the AD state. 

2. Analysis and discussion 

We consider N identical Stuart–Landau oscillators sitting on a ring. Each oscillator interacts with its nearest neighbors 

via a diffusive conjugate coupling. The motion equation of the system is described as 

˙ x i = (1 − x 2 i − y 2 i ) x i − ωy i + ε(y i +1 + y i −1 − 2 x i ) 

˙ y i = (1 − x 2 i − y 2 i ) y i + ωx i + ε(x i +1 + x i −1 − 2 y i ) (1) 

where i = 1 , . . . , N. The periodic boundary condition is imposed on the system. ε is the coupling strength. When ε = 0 , each 

oscillator oscillates at the frequency ω and the origin x = 0 and y = 0 is an unstable equilibrium. 

2.1. Amplitude death 

To investigate the dynamics in the model (1) , we begin with the AD state. For convenience, we let s i = (x i , y i ) and s i = 0 

for all i in the AD state. We first consider the stability of the AD state. To do it, we perturb the AD state by letting s i = ξi . 

Then the evolution of ξi follows 

d 

dt 
ξi = [ DF (0 ) − 2 εD 1 ] ξi + εD 2 

∑ 

j 

C i j ξ j (2) 

where D 1 = 

(
1 0 
0 1 

)
and D 2 = 

(
0 1 
1 0 

)
. C is an N × N coupling matrix with zero elements except that C i,i +1 = C i −1 ,i = 1 de- 

scribing the interaction among oscillators. DF (0 ) = 

(
1 −ω 

ω 1 

)
is the Jacobian matrix of a Stuart–Landau oscillator on s = 0 . 

To analyze the stability of the AD state, we adopt the methods in Refs. [25,26] . The coupling matrix C can be diagonalized 

to Cφα = λαφα ( α = 0 , 1 , . . . , N − 1 ). For the ring structure, the coupling matrix C has its eigenvalues λα = 2 cos 2 απ
N and 

eigenvectors φα = (1 , φ1 
α, . . . , φN−1 

α ) representing spatial modes with different wavenumbers. Nonuniform perturbation ξi 

can be expanded onto the eigenvectors φα of C and we have ξi = 	N−1 
α=0 

ηαφi 
α . Here ηα are time-dependent coefficients. 

Substituting the expansion into Eq. (2) and equating the coefficients for each φα , we have N independent linear equations 

for different spatial modes 

d 

dt 
ηα = [(DF (0 ) − 2 εD 1 ) + ελαD 2 ] ηα = DF α(0 ) ηα. (3) 

The matrix DF α(0 ) depends not only on the parameters of local dynamics but also on the spatial mode. The largest eigen- 

value of �( α) of the matrix DF α(0 ) gives the growth rate of the αth spatial mode. When all Re ( �( α) ) are negative, the AD 

state is stable. Otherwise, the AD state lose its stability. For spatial modes with positive Re ( �( α) ), we call them unstable 

modes to the AD state. For an unstable mode with zero Im ( �( α) ), the perturbation possibly gives rise to a stationary spatial 

pattern, while a oscillatory pattern is possible for an unstable mode with nonzero Im ( �( α) ). Furthermore, if there is only 

one unstable mode to the AD state, the final pattern always has the same spatial structure as the unstable mode no matter 

whether the pattern is stationary or oscillatory. However, if there are more than one unstable modes, the final pattern is 

determined by the competition among these modes. The mode with the highest Re ( �( α) ) tends to win the competition. 

For the model (1) , the matrix DF α(0 ) takes the form DF α(0 ) = 

(
1 − 2 ε −ω + ελα

ω + ελα 1 − 2 ε

)
and, by introducing the notation 

T r (D F α(0 )) and Det(D F α(0 )) for the trace and the determinant of the matrix DF α(0 ) , we have �α = [ T r (D F α(0 )) ±√ 

T r (D F α(0 )) 2 − 4 Det(D F α(0 ) ] / 2 . When ε < | ω/ λα |, the AD state is a focus to the spatial mode φα . Negative Re ( �( α) ) 

requires T r (D F α(0 )) to be negative and Det(DF α(0 )) to be positive. The former gives ε > εc,T = 1 / 2 and the latter gives 

λ2 
α < [ ω 

2 + (2 ε − 1) 2 ] /ε2 . Since λα = 2 cos (2 απ/N) , the second inequality is first violated by λ0 for odd N or by λ0 and 

λN /2 for even N at εc,D = (ω 

2 + 1) / 4 . For larger ε, the second inequality may be violated by more and more spatial modes. 

According to the stability condition of the AD state requiring all spatial modes to be stable, the AD state is stable for the 

coupling strength in the range of ε ∈ ( εc , T , εc , D ) when ω > 1. When ω < 1, εc , T > εc , D and the AD state is unstable no 

matter what ε is. The stability regime in the parameter space ω and ε is presented in Fig. 1 . To be noted, the stability 

condition for the stable AD state has been derived in the work [13] for N = 2 . Here, we have shown that the stability of the 

AD state is independent of N in conjugate coupled Stuart–Landau oscillators. 
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