
An Algorithm for Compositional Nonblocking

Verification of Extended Finite-State Machines

Sahar Mohajerani ∗ Robi Malik ∗∗ Martin Fabian ∗

∗ Department of Signals and Systems,
Chalmers University of Technology, Göteborg, Sweden,

(e-mail: {mohajera,fabian}@chalmers.se)
∗∗ Department of Computer Science, University of Waikato, Hamilton,

New Zealand, (e-mail: robi@waikato.ac.nz)

Abstract: This paper describes an approach for compositional nonblocking verification of
discrete event systems modelled as extended finite-state machines (EFSM). Previous results
about finite-state machines in lock-step synchronisation are generalised and applied to EFSMs
communicating via shared variables. This gives rise to an EFSM-based conflict check algorithm
that composes EFSMs gradually and partially unfolds variables as needed. At each step,
components are simplified using conflict-equivalence preserving abstraction. The algorithm
has been implemented in the discrete event systems tool Supremica. The paper presents
experimental results for the verification of two scalable manufacturing system models, and shows
that the EFSM-based algorithm verifies some large models faster than previously used methods.

Keywords: Discrete event systems, extended finite-state machines, compositional verification,
nonblocking, abstraction.

1. INTRODUCTION

Many discrete event systems are safety-critical, where
failures can result in huge financial losses or even human
fatalities. Logical correctness is a crucial property of these
systems, and formal verification is an important part of
guaranteeing it. This paper focuses on the verification of
the nonblocking property (Ramadge and Wonham, 1989).

Formal verification requires a formal model, and finite-
state machines (FSM) are widely used to represent dis-
crete event systems (Ramadge and Wonham, 1989). FSMs
describe the behaviour of a system using states and tran-
sitions between these states. Yet, data driven systems
are more naturally modelled as extended finite-state ma-
chines (EFSM), which communicate through bounded dis-
crete variables. EFSMs have been similarly defined by
several researchers (Chen and Lin, 2000; Yang and Go-
hari, 2005; Sköldstam et al., 2007; Zhaoa et al., 2012; Tei-
xeira et al., 2013).

While variables simplify the modelling of discrete event
systems, the verification of large systems remains a chal-
lenge due to the state-space explosion problem. Verifica-
tion must take all possible variable values into account,
which can result in a large state space. To overcome state
space explosion, various approaches including symbolic
model checking (Baier and Katoen, 2008; McMillan, 1993)
and abstraction (Graf and Steffen, 1990; Dams et al., 1994)
have been proposed. Another method is compositional
verification using conflict equivalence, which has shown
impressive results for large FSM models (Flordal and Ma-
lik, 2009; Su et al., 2010; Malik and Leduc, 2013).

To apply FSM-based compositional methods to systems
modelled as EFSMs, the model is first converted to a set
of FSMs (Sköldstam et al., 2007). While the conversion

preserves the modular structure, making it possible to
apply FSM-based methods directly, it has the drawback
of significantly increasing the number of events. In some
cases, the conversion takes longer than the verification.

Recently, an adaptation of compositional verification to
EFSM models was proposed (Mohajerani et al., 2013a),
which removes the need to convert EFSMs to FSMs. In
that work, symbolic observation equivalence is used as the
only abstraction method. While observation equivalence
reduces the state space significantly, it is not the best
possible equivalence for nonblocking verification (Malik
et al., 2006). Several conflict-preserving abstraction rules
for FSMs are known (Flordal and Malik, 2009; Malik and
Leduc, 2013) that extend beyond observation equivalence.

This paper applies the compositional framework (Flordal
and Malik, 2009) to systems modelled as EFSMs commu-
nicating via shared variables. In addition to partial unfold-
ing, which removes variables from the system, and selfloop
removal, which removes transitions, the paper provides
a general framework to apply every conflict-preserving
FSM abstraction rule (Flordal and Malik, 2009; Malik and
Leduc, 2013) directly to EFSMs. The proposed EFSM-
based compositional algorithm is implemented in Suprem-
ica (Åkesson et al., 2006), and has been used successfully
to verify two scalable manufacturing systems.

This paper is structured as follows. Sect. 2 introduces the
notation and concepts for EFSMs. Sect. 3 presents the idea
of compositional nonblocking verification of EFSMs and
shows how an EFSM can be simplified without converting
it to an FSM. Afterwards, Sect. 4 describes the algorithm
for compositional nonblocking verification of EFSM sys-
tems, Sect. 5 presents the experimental results, and Sect. 6
adds some concluding remarks.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 376 10.3182/20140514-3-FR-4046.00039



2. PRELIMINARIES

2.1 Finite-State Machines

The standard means to model discrete event systems
(Ramadge and Wonham, 1989) are finite-state machines
(FSM), which synchronise on shared events (Hoare, 1985).
Events are taken from a finite alphabet Σ. The special
silent event τ /∈ Σ is not included in Σ unless explicitly
mentioned using the notation Στ = Σ ∪ {τ}. Further, Σ∗

is the set of all finite traces of events from Σ, including the
empty trace ε. The concatenation of two traces s, t ∈ Σ∗

is written as st.

Definition 1. A finite-state machine (FSM) is a tuple G =
〈Σ, Q,→, Q◦, Qω〉, where Σ is a finite set of events, Q is a
finite set of states, → ⊆ Q×Στ ×Q is the state transition
relation, Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is
the set of marked states.

The transition relation is written in infix notation x
σ
→ y,

and is extended to traces in Σ∗
τ by x

ε
→ x for all x ∈ Q,

and x
sσ
→ z if x

s
→ y and y

σ
→ z for some y ∈ Q. The

transition relation is also defined for state sets X,Y ⊆ Q,

for example X
s
→ y means x

s
→ y for some x ∈ X.

Definition 2. Let G1 = 〈Σ1, Q1,→1, Q
◦
1, Q

ω
1 〉 and G2 =

〈Σ2, Q2,→2, Q
◦
2, Q

ω
2 〉 be two FSMs. The synchronous com-

position of G1 and G2 is

G1‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2,→, Q◦
1 ×Q◦

2, Q
ω
1 ×Qω

2 〉 (1)

where

(x1, x2)
σ
→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1

σ
→1 y1, x2

σ
→2 y2 ;

(x1, x2)
σ
→ (y1, x2) if σ ∈ (Σ1 \ Σ2) ∪ {τ}, x1

σ
→1 y1 ;

(x1, x2)
σ
→ (x1, y2) if σ ∈ (Σ2 \ Σ1) ∪ {τ}, x2

σ
→2 y2 .

This paper concerns verification of the nonblocking prop-
erty, which is commonly used in supervisory control theory
of discrete event systems (Ramadge and Wonham, 1989).

Definition 3. An FSM G = 〈Σ, Q,→, Q◦, Qω〉 is nonblock-

ing if, for every s ∈ Σ∗
τ and every x ∈ Q such that Q◦ s

→ x,

there exists t ∈ Σ∗
τ such that x

t
→ Qω.

2.2 Extended Finite-State Machines

Extended finite-state machines (EFSM) are similar to
conventional finite-state machines (FSM), but augmented
with updates associated to the transitions (Chen and
Lin, 2000; Sköldstam et al., 2007). Updates are predicates
containing variables.

A variable v is an entity associated with a finite do-
main dom(v) and an initial value v◦ ∈ dom(v). Let V =
{v0, . . . , vn} be the set of variables with domain dom(V ) =
dom(v0) × · · · × dom(vn). An element of dom(V ) is also
called valuation and denoted by v̂ = (v̂0, . . . , v̂n) with
v̂i ∈ dom(vi). The initial valuation is v̂◦ = (v◦0 , . . . v

◦
n).

A second set of variables, called next-state variables and
denoted by V ′ = { v′ | v ∈ V } with dom(V ′) = dom(V ), is
used to describe how variables are updated by transitions.

For example, let x be a variable with domain dom(x) =
{0, . . . , 5} and initial value x◦ = 0. A transition with
update x′ = x + 1 changes the variable x by adding 1 to
its current value, if it currently is less than 5. Otherwise
(if x = 5) the transition is disabled and no updates are

performed. Another possibility is to write the formula x′ =
min(x+1, 5), in which case the transition remains enabled
when x = 5. The update x = 3 disables a transition unless
x = 3 in the current state, and the value of x in the next
state is not changed. Differently, the update x′ = 3 always
enables its transition, and the value of x in the next state
is forced to be 3.

The set of all update predicates using variables in V and V ′

is denoted by ΠV . For an update p ∈ ΠV , the term vars(p)
denotes the set of all variables that occur in p, and vars′(p)
denotes the set of all variables modified by p. For example,
if p ≡ x′ = y+1 then vars(p) = {x, y}, and vars′(p) = {x}.
An update p with vars′(p) = ∅ is called a pure guard. Its
execution leaves all variables unchanged.

Definition 4. An extended finite-state machine (EFSM) is
a tuple E = 〈V,Q,→ , Q◦, Qω〉, where V is a finite set of
variables, Q is a finite set of locations, → ⊆ Q × ΠV ×Q
is the conditional transition relation, Q◦ ⊆ Q is the set of
initial locations, andQω ⊆ Q is the set ofmarked locations.

The expression x
p
→ y denotes the presence of a transition

in E, from location x to location y with update p ∈ ΠV .
On the occurrence of such a transition, the EFSM changes
its location from x to y while updating the variables
in vars′(p) in accordance with p; variables not contained
in vars′(p) remain unchanged.

Usually, reactive systems are modelled as several compo-
nents interacting with each other. An EFSM system is a
collection of interacting EFSMs,

E = {E1, . . . , En} . (2)

The behaviour of such a system is expressed using inter-
leaving semantics (Baier and Katoen, 2008). Synchronisa-
tion is achieved indirectly through the variables.

Definition 5. Given two EFSMs E = 〈VE , QE ,→E , Q
◦
E ,

Qω
E〉 and F = 〈VF , QF ,→F , Q

◦
F , Q

ω
F 〉 the composition of

E and F is

E ‖F = 〈VE∪VF , QE×QF ,→, Q◦
E×Q◦

F , Q
ω
E×Qω

F 〉 , (3)

where

• (xE , xF )
pE
→ (yE , xF ) if xE

pE
→E yE ;

• (xE , xF )
pF
→ (xE , yF ) if xF

pF
→F yF .

To apply the nonblocking property to EFSMs, they are
interpreted as FSMs. The standard approach to do this is
flattening, which introduces states for all combinations of
locations and variable values (Baier and Katoen, 2008).

Definition 6. Let E = 〈V,Q,→ , Q◦, Qω〉 be an EFSM.
The monolithic flattened FSM of E is U(E) = 〈∅, QU ,
→U , Q

◦
U , Q

ω
U 〉 where

• QU = Q× dom(V ),

• (x, v̂)
τ
→U (y, ŵ) if x

p
→ y and p(v̂, ŵ) = true,

• Q◦
U = Q◦ × {v̂◦}

• Qω
U = Qω × dom(V ).

The domain of variables and the initial valuation v̂0 are
determined by variables as they are properties of variables.
The variable values ensure the correct sequencing of transi-
tions in the flattened FSM. The flattened FSM of an EFSM
system E = {E1, . . . , En} is U(E) = U(E1‖· · ·‖En). Using
these definitions, the nonblocking property is also defined
for EFSMs and EFSM systems.

2

WODES 2014
Cachan, France. May 14-16, 2014

377



Download English Version:

https://daneshyari.com/en/article/715516

Download Persian Version:

https://daneshyari.com/article/715516

Daneshyari.com

https://daneshyari.com/en/article/715516
https://daneshyari.com/article/715516
https://daneshyari.com

