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a b s t r a c t 

The combination of the multiple shooting strategy with the generalized Gauss–Newton al- 

gorithm turns out in a recognized method for estimating parameters in ordinary differ- 

ential equations (ODEs) from noisy discrete observations. A key issue for an efficient im- 

plementation of this method is the accurate integration of the ODE and the evaluation of 

the derivatives involved in the optimization algorithm. In this paper, we study the feasibil- 

ity of the Local Linearization (LL) approach for the simultaneous numerical integration of 

the ODE and the evaluation of such derivatives. This integration approach results in a sta- 

ble method for the accurate approximation of the derivatives with no more computational 

cost than that involved in the integration of the ODE. The numerical simulations show that 

the proposed Multiple Shooting-Local Linearization method recovers the true parameters 

value under different scenarios of noisy data. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Ordinary differential equations (ODEs) are extensively used for modeling the temporal evolution of complex dynamical 

systems in dissimilar fields such as physics, economy, ecology, biology, chemistry and social sciences [1] . Typically, these 

ODEs contain parameters that are associated to phenomenological factors that control the basic variables interplay of the 

models. However, the values of such parameters are usually unknown and must be determined in such a way that the 

models reproduce the observed experimental data at best. Despite a time series analysis of observed experimental data can 

determine useful quantities that characterize the system dynamics (e.g., Lyapunov exponents, attractor dimension), identify- 

ing the system structure and estimating the corresponding parameters would be a matter of greater practical value. Thus, 

an accurate estimation of the non observed states and models’s parameters is not only critical to reproduce and describe 

a given dynamic behavior but also to understand the underlying causes of the analyzed processes. This is of particular im- 

portance for ODEs describing chaotic dynamics, where the trajectories of interest are very sensitive to small perturbations 

of the parameters and initial values [2–5] . In this circumstance, a major challenge is to find a proper numerical integrator 

able to preserve the stability of the solutions in situations of parameter-dependent instabilities in such a way that allows an 

accurate estimation of these parameters from noisy chaotic observations. 
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Several methods have been proposed for the parameter identification in ODEs given a set of (noisy) observations. A large 

class of methods, relying on synchronization phenomena of dynamical systems and control theory [5–8] , has been success- 

fully applied to a number of problems with either smooth or chaotic dynamics. The basic idea behind this class of methods 

is to couple a control term to the dynamics in order to synchronize the measured signal from the system and the controlled 

model. Then, parameter estimation is usually carried out by means of minimization of the synchronization errors. As pointed 

out by [7] , these parameter estimation techniques can be broadly classified into two categories: on-line and off-line. The 

on-line techniques deal with the class of methods that involve the solution of additional differential equations governing 

a time evolution of the parameters, whereas the off-line techniques perform the direct minimization of a distance (cost 

function) between the observations and the model output. As explained in [5] , this optimization procedure is equivalent to 

stabilize the synchronization manifold of the combined observed system plus the model state space. Typically, the on-line 

strategies are effective when the observations are collected on a sufficient large period of time in such a way that the 

transient in the parameter dynamics disappear and when the observed states of the model are sampled with a suitable high 

rate to resembling the truly continuous signal. Clearly, these requirements for the observations become in a serious draw- 

back in many practical situations where it is difficult, costly or simply impossible to measure high frequency data during a 

large period of time. In these circumstances, the off-line techniques for the parameters estimation are more effective. 

The above mentioned off-line identification techniques are actually more in correspondence with the so-called Initial 

Value approach, which is perhaps the most known class of methods for parameter estimation of ODEs. In this approach, 

the estimated parameters are those that minimize the least square errors resulting from fitting the numerical solution of 

the corresponding Initial Value problem to the given observation data. However, according to [9–11] , the estimators result- 

ing from this approach are very sensitive to the initial guess of the parameters and usually turn out only local optimum 

solutions. Moreover, for certain initial parameter values, the solution of the ODEs might not even exist over the whole inte- 

gration interval, producing overflow in the numerical integration, and so, the failure of the optimization algorithm. A class 

of estimation methods that overcome these drawbacks was originally introduced in [9] and it is currently known as the 

Boundary Value approach (see, e.g., [3,10,12,13] ). This approach has two distinctive components: 1) the introduction of sev- 

eral multiple shooting nodes for solving the ODE as multiple Initial Value Problems (IVPs) in smaller subintervals, and 2) 

the solution of a constrained least squares problem in an augmented set of parameters. The main advantage of this multiple 

shooting method is that the whole observed data can be easily used to bring information about the true solution of the ODE 

on the whole integration interval [10] . In such a way, the numerical solution of the multiple IVP remains close to the true 

solution since the first iteration of the optimization algorithm. This limits the propagation of the integration error, reduces 

the sensitivity of the estimators respecting to possible bad initial guess of the unknown parameters, reduces the number of 

iterations of the optimization algorithm, and allows the estimation of parameters even in the case of chaotic systems ( [2] , 

[3] ). Besides, the splitting of a single IVP into multiple IVPs with independent initial conditions allows an efficient evaluation 

of the cost function by means of parallel algorithms, which significantly reduces the computational burden of the multiple 

shooting methods as compared with the single shooting ones. Despite the introduction of additional variables seems to yield 

a more complicated estimation procedure, it is actually increasing computational efficiency and numerical stability of the 

estimation method [10] , [3] . A third type of off-line technique, called nonparametric, employs nonparametric functions to 

represent the unknown solutions of the ODEs (see, e.g., [14] , [15] , [16] , [11] , [17] ). Typically, this class of estimators require 

two levels of optimization. The lower level approximates non parametric functions to the ODE trajectories conditional on the 

ODE parameters, while the upper optimization level does the estimation of the parameters of interest. Clearly, as compared 

to the previous two approaches, this procedure increases the computational burden of the parameters estimation process. 

As remarked in [11] , a common difficulty of these off-line estimation strategies is the numerical computation of the 

derivatives of the trajectories with respect to the parameters of the ODE. With this respect, three main approximations have 

been commonly employed. The simplest one, finite differences, also called external differentiation [9] , [10] is not usually rec- 

ommended due to the high computational cost required for achieving numerically stable derivatives (see further discussion 

in [13] ). The second one, called internal differentiation, consists on differentiating the numerical integrator corresponding to 

the original differential equation [9] , [10] , [18] . In general, internal differentiation is a mechanism less computationally inten- 

sive than the external differentiation but, it might introduce also high computational cost in the case of implicit integrators 

or integrators defined trough some numerical derivatives. The third approach ( [9] , [10] , [13] ) consists on approximating the 

variational equations that describe the temporal evolution of the required derivatives, which must be integrated simultane- 

ously to original equation. As in the second kind of approximation, this can be also computationally intensive for certain 

types of numerical schemes. 

In this paper, we study the feasibility of the Local Linearization (LL) approach (see, e.g., [19] , [20] ) for the simultaneous 

numerical integration of the IVPs and the evaluation of the numerical derivatives that appear in the multiple shooting 

method. In previous works [21] , [22] , [23] this LL technique has been successfully applied for the parameter estimation 

of ODEs in the context of the Initial-Value approach. This has been possible thanks to the convenient trade-off between 

the numerical accuracy, stability and computational cost of the LL integrators and their capability of preserve a number of 

dynamical behaviors of the ODEs, which became relevant for the parameter estimation. In addition to this and following 

the ideas used in [24] for the computation of the Lyapunov Exponents, the LL technique can be used for the numerical 

integration of the variational equations associated to the derivative with respect to the parameters and initial conditions 

with no more computational cost than that involved in the integration of the ODE. Therefore, the application of the LL 

technique for identification of ODEs in the framework of Boundary Value approach is also attractive. The inference method 
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