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a b s t r a c t

The aim of this study is to describe several biomaterials and tissues using a simple mate-

rial identification pattern applied to the fractional Kelvin–Zener model of viscoelastic body

and standard mechanical tests. Each of the descriptions comprises the order of fractional

derivative of stress and strain, modulus of elasticity, and stress and strain relaxation con-

stants that obey restrictions imposed by the Clausius–Duhem inequality. These four param-

eters are obtained by use of the Laplace transform, Post’s inversion formula and Newton’s

method. The suggested approach can serve as an alternative to quasilinear viscoelasticity

providing a physically uniform quantitative measure for biomaterials/tissues comparison

and can be applied to real data. It works for nonsmooth inputs too. Regarding biomate-

rials the comparison between an etched poly lactic-co-glycolic acid membrane and the

corresponding composite scaffold was made. With respect to human tissues the tympanic

membrane, the stapedial tendon, and the stapedial annular ligament were described. The

obtained mechanical response for examined cases is in agreement with the experimentally

recorded one.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, increasing number of papers on applications of fractional calculus (FC) in biology and medicine is

noticeable [1,6-8,21-33]. The notion of fractional differentiation, or more appropriately the differentiation of arbitrary real

order, means an operation analogous to standard differentiation which will take into account, memory effects if the indepen-

dent variable is time, or nonlocal effects in the case of spatial independent variables. Being a part of a constitutive law, [20],

this more sophisticated tool is naturally used to complement fundamental principles and contributes to the reliability of any

simulation of organ deformations under physiologic loads. Namely, for any material that is to be used in biomedical engi-

neering, considerations of mechanical properties are essential. A good choice of material for a particular application depends

on recognition of these properties in the analysis of both similarity of biomaterials to biological ones and bio-compatibility

since mechanical functions should be treated along the fundamental principles of physiology, cell biology and basic clinical

knowledge. It is clear that even in a case of typical load-deformation patterns, the characterization of mechanical response

requests more sophisticated stress–strain relations and efficient material identification procedures.
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Among all possible constitutive laws for complex applications in bioengineering we recommend the fractional Kelvin–

Zener model (FKZM) that generalizes the standard linear solid known as Kelvin’s [2], or Zener’s model, [3]. Besides fractional

derivatives of stress and strain it calls for the restrictions that follow from second law of thermodynamics, [4,5], so it takes

into account energy dissipation ab initio. Comparing to the quasi-linear viscoelasticity model of Fung, the most common

phenomenological model of viscoelastic behavior that is based on Prony’s approximation, FKZM requires only four constants

for acceptable accuracy. Regarding the material identification procedures for FKZM, these constants are usually calculated

from highly non-linear systems involving Mittag–Leffler-type functions combined with valid iterative methods which will

enable an initial guess of material parameters to be systematically improved. Examples are given in [6] and [7] where

Newton’s method and the particle swarm optimization (PSO) were used respectively.

This work is motivated by the need to avoid if-then-else statements usually encountered in the computational schemes

included in the evaluation of the Mittag–Leffler function. Namely, by analogy with a new fractional system identification

procedure recently proposed in [8] that bears on the Laplace transform, Post’s inversion formula (PIF), Newton’s method and

the computational software program support, offered by Mathematica, instead of the exact solutions of fractional differential

equations their analytical approximations will be used. It will be shown that the suggested approach combined with FKZM

fits in with standard experimental patterns and yields acceptable accuracy even in cases with nonsmooth inputs, i.e. when

prescribed load or deformation functions exhibit corner points. Typical examples of these nonsmooth patterns are ramp-and-

hold stress then creep and ramp-and-hold strain then stress relaxation experiments. Without loss of generality and in order

to show how it works in practice, recently reported results on ramp-and-hold strain stress relaxation (RHSSR) experiments

will be used. With respect to biomaterials, on the basis of [9], the comparison between an etched poly lactic-co-glycolic acid

(PLGA) membrane and the corresponding composite scaffold will be made. In the same manner, FKZM representation of the

tympanic membrane (TM), the stapedial tendon (ST), and the stapedial annular ligament (SAL) will be obtained by use of

reports given in [10,11] and [12], respectively. Assuming that similar tissues can be recognized by comparison of their FKZM

representations these results can be used in finding tissue analogues needed for reconstructions of the middle ear function

[7].

2. Theory/calculation

Consider uniaxial isothermal deformation of a viscoelastic body of negligible mass from its virginal state. Denoting strain

(relative elongation) by ε and stress (force per unit area of the body in the undeformed state) by σ , let us analyze the

deformation pattern denoted by RHSSR. Namely, in the loading phase with initial constant strain rate κ , at time instant

tk strain will reach a constant level ε0 = κtk and stress will attain its maximal value, say σk. After tk, strain is maintained

constant while stress starts to decrease in time without any jump at tk. This stress relaxation is an inherent property of real

materials. The strain function corresponding to RHSSR reads ε(t) = κ[t · h(t) − (t − tk) h(t − tk)], where h(t) stands for the

Heaviside step function, while κ, and either ε0 or tkare input parameters. Note that there is a corner point of ε(t) at t = tk.

It is a well known fact that RHSSR deformation pattern can be easily described by FKZM, see [7], i.e.

σ + τσασ (α) = Eα(ε + τεα)ε(α), (1)

where (·)(α) denotes the left Riemann–Liouville fractional derivative of order αwith respect to time, taken in the standard

form [13], Eα is modulus of elasticity, while τσα and τεα are the relaxation constants of dimension time to the power of

α, (0 < α ≤ 1). The corresponding fundamental restrictions on the coefficients in (1), following from the Clausius–Duhem

inequality read Eα > 0, τσα > 0, τεα > τσα, see [4] and [5]. As stated in [14] the same analysis can be applied for the simple

shear deformation pattern, where in turn ε, σ , and Eα in (1) will denote shear strain, shear stress, and shear modulus

respectively.

Applying Laplace’s transform with σ̄ = σ̄ (s) = L{σ (t)} = ∫ ∞
0 e−stσ (t) dt and ε̄ = ε̄(s) = L{ε(t)} = ∫ ∞

0 e−stε(t) dt, to (1),

under the assumption that the deformation process starts from a virginal state ε(0) = 0, σ (0) = 0, after some calculations

one gets

σ̄ (s) = Eαε̄(s) + Eα(τεα − τσα)
1

s−α + τσα
ε̄(s), (2)

where the standard expression for the Laplace transform of the fractional derivative of order α was used [13]. The Laplace

transform of the strain function corresponding to RHSSR reads ε̄(s) = κ(1 − e−stk )/s2. It should be noted that for RHSSR the

exact analytical solutions of (2) involving the Mittag–Leffler type functions are used in material identifications procedures in

time domain, see [7] and [8] for details. Working in time domain has its own advantages [15], however the Mittag–Leffler

type functions appearing within iterative processes of these procedures, either directly, or as kernels of convolution integrals,

are calculated. Depending on the argument these calculations bears on several expressions and if-then-else statements. In

the following these steps will be replaced by use of PIF. This formula approximates the original of the Laplace transform in

a given point in time domain, see [16] for proof and [17] for its application within a fractional evolution problem of short

duration.

In order to determine FKZM representation, i.e., the values of α, Eα, τσα, τεα, first four non-equidistant time in-

stants within four pairs from the set of experimental data obtained for given ε(t), say {(t j, σ j), j = 1, 4} are to be ran-

domly selected. Then, introducing the corresponding strain image ε̄(s) in (2), and regarding obtained σ̄ (s) as a function
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