
Computation of Supervisors for

Fault-Recovery and Repair for Discrete

Event Systems ⋆

Ayşe Nur SÜLEK ∗ Klaus Werner SCHMIDT ∗∗

∗ Department of Electronic and Communication Engineering, Çankaya
University, Ankara, Turkey, (e-mail: anursulek@cankaya.edu.tr)
∗∗ Department of Mechatronics Engineering, Çankaya University,

Ankara, Turkey, (e-mail: schmidt@cankaya.edu.tr)

Abstract: In this paper, we study the fault-recovery and repair of discrete event systems
(DES). To this end, we first develop a new method for the fault-recovery of DES. In particular,
we compute a fault-recovery supervisor that follows the specified nominal system behavior until
a fault-occurrence, that continues its operation according to a degraded specification after a
fault and that finally converges to a desired behavior after fault. We next show that our method
is also applicable to system repair and we propose an iterative procedure that determines a
supervisor for an arbitrary number of fault occurrences and system repairs. We demonstrate
our method with a manufacturing system example.

Keywords: Discrete event systems, supervisory control, failure-recovery, repair.

1. INTRODUCTION

Fault-tolerant and failure-recovery control allow continu-
ing the system operation after a fault occurrence while ful-
filling a potentially degraded specification. In this paper,
we develop a new approach for fault-recovery of discrete
event systems (DES) that is also suitable for handling sys-
tem repair. We consider DES that allow modeling the oc-
currence of faults and we use three language specifications
to conveniently represent the desired system behavior: the
desired non-faulty behavior is given by a nominal speci-
fication; the desired continuation of the system behavior
after a fault-occurrence is given by a degraded specification;
the desired faulty closed-loop behavior that should finally
be achieved is represented by a more restrictive faulty
specification. As an important feature of our formulation,
it is not assumed that the closed-loop system must obey
each specification starting from the initial plant state but
it has to partially fulfill each specification depending on
the presence of a fault.

In order to solve the fault-recovery problem, we pro-
pose an algorithm for finding a nonblocking fault-recovery
supervisor based on the interleaving composition opera-
tion (Hoare, 2004 [1995]) and using language convergence
(Willner and Heymann, 1995). We further show that the
developed method can as well be applied to handle system
repair. Then, it is desired to finally achieve the nominal
specification after performing a system repair. Finally, an
iterative application of our method allows computing a
fault-recovery supervisor for an arbitrary number of fault
occurrences and system repairs. We apply the described
method to a manufacturing system example.

⋆ This work was supported by the Scientific and Research Council
of Turkey (TÜBITAK) [Carrier Award 110E185].

Several approaches in the literature address fault-recovery
without an explicit consideration of system repair and the
re-occurrence of faults (Saboori and Hashtrudi-Zad, 2005;
Paoli et al., 2011; Kumar and Takai, 2012; Wittmann
et al., 2012; Wen et al., 2008). Saboori and Hashtrudi-
Zad (2005) consider that the system enters a transient
mode upon fault occurrence and a recovery mode upon
fault detection. The work by Paoli and Lafortune (2008);
Paoli et al. (2011) proposes to detect faults using a
diagnoser and switch to a different supervisor before the
nominal system behavior is violated. Kumar and Takai
(2012) derive necessary and sufficient conditions for the
controller reconfiguration in case of faults. The use of
fault-accommodating models is proposed by Wittmann
et al. (2012). Similar to our approach, this method allows
integrating the nominal and faulty system behavior and
system specification into a single model. The work in
Wen et al. (2008) uses a notion of convergence similar to
our approach. However, Wen et al. (2008) define fault-
tolerance in the sense that the system behavior should
converge to the nominal system behavior instead of a
desired faulty behavior. A specific version of system repair
is considered in our previous work in Sülek and Schmidt
(2013), where it is assumed that certain plant events are
no longer possible if a fault occurs and the plant can return
to its nominal operation after repair.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the basic notation regarding DES and
supervisory control. The fault-recovery control problem
considered in this paper is stated in Section 3 and a
solution is developed in Section 4. Section 5 considers the
case of system repair and multiple faults and Section 6
gives conclusions.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 428 10.3182/20140514-3-FR-4046.00106

2. PRELIMINARIES

2.1 Discrete Event Systems

For a finite alphabet Σ, the set of all finite strings over Σ
is denoted as Σ⋆, whereas the empty string is ǫ ∈ Σ⋆. For
any string s ∈ Σ⋆, |s| denotes the length of s. A language
over Σ is a subset L ⊆ Σ⋆. Writing s1 ≤ s if there is a
t ∈ Σ⋆ s.t. s = s1t, a language L is denoted as prefix-
closed if L = L := {s1 ∈ Σ⋆| ∃s ∈ L s.t. s1 ≤ s}. In
addition, for a language L ∈ Σ⋆ and a string s ∈ L, we
write L/s := {t ∈ Σ⋆|st ∈ L} for the set of suffixes of s in
L.

We model a DES by a deterministic finite automaton
G = (X,Σ, δ, x0) with the states X, the alphabet Σ,
the partial transition function δ : X × Σ → X and the
initial state x0. We recursively extend δ to strings such
that for x ∈ X, s ∈ Σ⋆ and σ ∈ Σ, δ(x, ǫ) = x and
δ(x, sσ) = δ(δ(x, s), σ) if δ(x, s) exists. Then, we define the
closed language L(G) := {s ∈ Σ⋆|δ(x0, s) exists} of G and
assume that the synchronous composition G1||G2 of two
automata G1 and G2 is given in the usual way (Wonham,
2010).

2.2 Supervisory Control

In a supervisory control context, we write Σ = Σc ∪̇Σu for
controllable (Σc) and uncontrollable (Σu) events. We say
that S = (Q,Σ, ν, q0, Qm) is a supervisor forG with Σu if S
only disables events in Σc. That is, for all s ∈ L(G)∩L(S)
and σ ∈ Σu with sσ ∈ L(G) also sσ ∈ L(S).

A language K ⊆ Lm(G) is said to be controllable for
L(G) and Σu if KΣu ∩ L(G) ⊆ K, and there exists a
marking supervisor S such that Lm(G||S) = K if and
only if K is controllable for L(G) and Σu Ramadge and
Wonham (1987). In case K is not controllable for L(G)
and Σu, we employ the supremal controllable sublanguage
of K, denoted as SupC(K,L(G),Σu) and use the marking
supervisor S such that Lm(S||G) = SupC(K,L(G),Σu).
It is ensured that such supervisor is nonblocking and
maximally permissive if SupC(K,L(G),Σu) 6= ∅.

2.3 Interleaving Composition

We recall the interleaving composition from Hoare (2004
[1995]) [page 99]. Given two languages K1,K2 ⊆ Σ⋆ over
the same alphabet, it defines a language that contains
all possible interleavings of strings from K1 and K2. We
reformulate the interleaving composition in our notation.

Definition 1. Let Σ be an alphabet and K1,K2 ⊆ Σ⋆ be
two languages. The interleaving composition K1|||K2 of
K1 and K2 is defined such that

s ∈ K1|||K2 ⇔ s = s11s
2

1 · · · s
1

ks
2

k for some k ∈ N and

sj
1
sj
2
· · · sjk ∈ Kj for j = 1, 2.

2.4 Language Convergence

We employ the notion of language convergence as in-
troduced by Willner and Heymann (1995). For a string
s ∈ Σ⋆, we write sufi(s) for the string obtained by deleting
the first i events from s. Specifically, suf0(s) = s and

suf |s|(s) = ǫ. Now consider two languages M,K ⊆ Σ∗.
M is said to converge to K, denoted by K ⇐ M , if there
is an integer n ∈ N0 such that for each s ∈ M , there exists
an i ≤ n such that sufi(s) ∈ K. The least possible n is
called the convergence time.

In the supervisory control context, the controlled con-
vergence problem (CCP) is studied. Let G be a plant
automaton over the alphabet Σ, Σu ⊆ Σ be a set of
uncontrollable events and K ⊆ Σ∗ specification. A su-
pervisor S is said to solve the CCP for G, K and Σu

if S||G is nonblocking, L(S||G) is controllable for L(G)
and Σu, and K ⇐ Lm(S||G). Assume that X is the state
set of G and Y is the state set of a recognizer C such
that Lm(C) = K. It is shown by Willner and Heymann
(1995) that the solvability of the CCP can be decided by
an algorithm with complexity O(|X|222|Y |). In addition, a
possible supervisor is also suggested in that paper.In the
sequel, we employ this supervisor whenever we solve the
CCP.

3. PROBLEM STATEMENT

In this section, we formulate the fault-recovery problem
studied in this paper. We consider that the system is
modeled using the alphabets Σ,ΣN,ΣF,Σu. Hereby, ΣF

contains fault events whose occurrence indicates the oc-
currence of a fault, ΣN contains all events that are not
associated to faults and Σ = ΣN ∪̇ΣF. Σu is the set
of uncontrollable events. Then, the system behavior is
characterized by the plant model G = (X,Σ, δ, x0, Xm)
that includes the potentially faulty system behavior.

The main objective of this research is to synthesize a
supervisor SF = (QF,Σ, νF, qF0 , Q

F
m) that achieves fault-

recovery in the closed loop G||SF. In order to specify
the desired system behavior, we consider three different
specifications. First, the nominal specification KN ⊆
Lm(G) characterizes the desired system behavior in case
no fault is present in the system. That is, the closed-loop
behavior without any fault occurrence should be a subset
of the nominal specification and nonblocking as stated in
the following condition.

P1: Lm(G||SF) ∩ (ΣN)⋆ ⊆ KN

Second, we use the degraded specification KD ⊆ Σ⋆ that
represents the admissible behavior after a fault occurrence.
In principle, we want that the system continues its oper-
ation after any fault while considering the past system
behavior until the fault. That is, a suitable part of the
behavior before a fault concatenated with the behavior
after a fault should belong to KD. Formally, we want that

P2: it holds for all s ∈ Lm(G||SF) ∩ (ΣN)⋆ΣF(ΣN)⋆ that
there exists a partition s = s11s

2
1 · · · s

1

ks
2

kfs3 with

f ∈ ΣF, sji ∈ (ΣN)⋆ for i = 1, . . . , k and j = 1, 2,

s11 · · · s
1

k ∈ KN and s21 · · · s
2

ks3 ∈ KD.

In words, s11 · · · s
1

k ∈ KN requires that one part of the
substring before a fault occurrence belongs to the nominal
behavior, whereas s21 · · · s

2

ks3 ∈ KD requires that the
remaining substring s21 · · · s

2

k before the fault occurrence
can be continued to a string in KD. That is, a substring
of the non-faulty behavior that should originally fulfill

WODES 2014
Cachan, France. May 14-16, 2014

429

Download English Version:

https://daneshyari.com/en/article/715524

Download Persian Version:

https://daneshyari.com/article/715524

Daneshyari.com

https://daneshyari.com/en/article/715524
https://daneshyari.com/article/715524
https://daneshyari.com

