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Abstract: This paper investigates the use of model checking techniques for fault diagnosis on
timed systems. The timed systems are modeled with time Petri nets (TPN). Our approach is
based on the fault diagnosis graph (FDG), which is obtained from the state class graph of TPN,
by removing nodes and edges that are not used in fault diagnosis. In order to apply the reduction
rules, we assume that the FDG is bounded and completely constructed. We first propose some
reduction rules on the FDG to obtain a more compact representation and then we use model
checking techniques on the reduced FDG to compute the diagnosis states. We compare the
complexity of model checking on FDG with the one on the reduced FDG.

1. INTRODUCTION

Fault diagnosis problem of Discrete Event Systems (DESs)
is an important research topic in last decades. Many works
have been proposed both in automata [1] and Petri nets [2].
Grabiec et al. [3] study on-line diagnosis of distributed
systems. The systems are represented using TPN extended
with time parameters and the proposed approach is based
on unfolding. The extension of time parameter is that
time bounds associated to transitions can be symbolic
expressions instead of rational constants. Cabasino et al.
[2] address the problem of fault diagnosis on untimed PN
where faults can be modeled by observable transitions. In
their work, observable fault transitions may share the same
label with other observable fault transitions, which can
belong to different fault classes. The approach is based
on the basis reachability graph and they assume that
the unobservable subnets are acyclic. Lefebvre et al. [4]
investigate the problem of diagnosability of untimed Petri
nets that can be either bounded or unbounded. They use
the coverability graph to construct the diagnoser such
that for unbounded PNs diagnosers with finite numbers
of states are available.

In [5] we propose Fault Diagnosis Graph (FDG) for the
fault diagnosis on TPN, which have been adapted to
decentralized fault diagnosis in [6]. The diagnosis algo-
rithms constructs the FDG incrementally with the ob-
served events. If a part of the FDG will be used for
diagnosis, it would be constructed. Using the incremental
approach, the computation of the whole FDG could be
avoided.

In this paper, we address the problem of fault diagno-
sis on TPN by applying model checking techniques on
FDG that is assumed to be bounded. First, we propose
some reduction rules on FDG and, second, investigate
model checking algorithms on the reduced FDG. Last,
time complexities of model checking algorithms on both
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reduced and not reduced FDG are compared in detail.
Comparing with our previous works, the contributions are
as follows: 1) The reduction rules eliminate nodes and
edges from a fully constructed FDG in order to reduce
the complexity of model checking algorithms on FDG.
By means of the reduction rules, the complexity of model
checking algorithms could be reduced. 2) Model checking
algorithms are applied on the FDG for fault diagnosis. The
diagnosis algorithms in [5] updates the diagnosis states
after the observation of an event while the model checking
algorithms deal with an observation word. We compare
the complexity of model checking algorithms on both non-
reduced and reduced FDGs.

2. TIME PETRI NET

In this section, we recall the basic definition of TPN system
(for a general introduction, see [7, 8]).

Definition 1. A TPN system is a pair 〈N ,m0〉, where
N = 〈P, T,Pre,Post, I〉 is a net structure with a set of
places P ; a set of transitions T ; the pre and post incidence

matrices Pre,Post ∈ N|P |×|T |≥0 ; I : T → Q≥0×Q≥0∪{∞}
is the time function associating a time interval to each

transition; and m0 ∈ N|P |≥0 is the initial marking, where

|P | is the number of places and |T | is the number of
transitions.

A transition t ∈ T is enabled at a marking m if m ≥
Pre[·, t], where Pre[·, t] is the column of Pre correspond-
ing to transition t. Considering I(t) = [l, u], then when
t is enabled, it cannot be fired earlier than l time units
and it has to be fired no later than u time units. If a
marking m′ is reachable from m by firing a sequence
σ = ti1ti2 · · · tin ∈ T ∗, where tij ∈ T, j = 1, 2, . . . , n
and T ∗ is the Kleene closure of T . The fundamental state
equation can be written as m′ = m−Pre ·σ+Post ·σ,
where σ ∈ N|T | is the firing count vector of σ that counts
how many times each transition is fired in σ, and m[σ〉
denotes that σ is fireable from m, while m[σ〉m′ means
the firing of σ drives m to m′. The single server semantic
is used in this paper, which means that a transition cannot
be enabled simultaneously more than once.
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The set of transitions T is partitioned into two subsets:
T = To ∪ Tu, To ∩ Tu = ∅, where To is the set of observable
transitions, whose firing can be detected by an external
observer, and Tu is the set of unobservable transitions.
The firing sequence σo is an observable firing sequence,
if t ∈ σo, then t ∈ To; σu is an unobservable firing
sequence, if t ∈ σu, then t ∈ Tu. An observation function
is O : σ → T ∗o , and it extracts the sequence of observable
transitions O(σ) from σ. Let σ = σu1σo1σu2σo2 · · ·σun,
then O(σ) = σo1σo2 · · ·σon−1. In figures, observable tran-
sitions are represented by white rectangles, e.g., t3 in Fig.
1, while unobservable ones are black rectangles, e.g., ε1 in
Fig. 1. We use |σ| to denote the number of transitions in σ.
For every node v ∈ P ∪ T , the set of its input and output
nodes are denoted as •v and v•, respectively.

Definition 2. The unobservable subnet of a TPN N =
〈P, T,Pre,Post, I〉 is Nu = 〈P, Tu,Preu, Postu, Iu〉,
where: 1) Tu is the set of unobservable transitions of N ,
2) P is the set of places, 3) Preu and Postu are pre and
post incidence matrices restricted to Tu, 4) Iu : Tu → Q0×
Q0 ∪ {∞}.

A directed circuit of PN is a sequence p1t1p2t2 · · · pntnp1,
where pj ∈ P , tj ∈ T , pj ∈ •tj , tj ∈ •pj+1, and
∀j 6= k, pj 6= pk, j, k = 1, 2, . . . , n. A net having no directed
circuits is called acyclic.

Definition 3. An observed word is a sequence of ordered
pairs w = 〈t1, τ1〉 . . . 〈tk, τk〉 ∈ (To × Q0)∗, in which
t1 is the first observed transition and it is observed at
τ1, while tk is the latest observed transition at τk. Let
〈N ,m0〉 be a TPN system and w = 〈t1, τ1〉 . . . 〈tk, τk〉 be
an observed word. We define the set of firing sequences
consistent with w by L(w) = {σ|m0[σ〉, w = O(σ) =
t1 . . . tk, such that ti is fireable at τi, i = 1, . . . , k}.

A fault is modeled by an unobservable transition, but there
may be unobservable transitions whose firing corresponds
to regular behaviors. To model faulty and regular behav-
iors in Petri net, the set of unobservable transitions is
partitioned into two subsets Tu = Tf ∪ Treg, where Tf in-
cludes all fault transitions and Treg includes all transitions
relative to unobservable but regular events. The set Tf is
further partitioned into r subsets as Tf = T 1

f ∪T 2
f ∪· · ·∪T rf ,

where all transitions in the same subset correspond to the
same fault class. We say that the i-th fault has occurred
when a transition in T if has been fired. We now provide
the definition of the diagnoser of a TPN system.

Definition 4. A diagnoser is a function ∆ : (To × Q0)∗ ×
{T 1

f , T
2
f , . . . , T

r
f } → {N, F,U}, where (To×Qo)∗ is the set

of observation w = 〈t1, τ1〉 . . . 〈tj , τj〉 and N, F and U rep-
resent Normal, Faulty and Uncertain states, respectively.
The diagnoser associates to each observed word w and to
each fault class T if , i = 1, . . . , r, a diagnosis state.

• ∆(w, T if ) = N if for all σ ∈ L(w) and for all tf ∈ T if
it holds tf 6∈ σ.

In this case, none of the firing sequences consistent
with the observation contains any fault transition of
class i, the i-th fault cannot have occurred.

• ∆(w, T if ) = U if: 1) there exists σ ∈ L(w) and tf ∈ T if
such that tf ∈ σ, but 2) there exists σ′ ∈ L(w) such
that tf 6∈ σ′,∀tf ∈ T if

In this case, a fault transition of class i may have
occurred or not, i.e., it is uncertain.

• ∆(w, T if ) = F if for all σ ∈ L(w) and ∃tf ∈ T if it
holds tf ∈ σ.

In such a case, the i-th fault have occurred, because
all fireable sequences consistent with the observation
contain at least one fault transition of class i.

We make the following assumptions: (A1) the initial mark-
ing and the net structure are known; (A2) the unobserv-
able induced subnet is acyclic; (A3) the bounds of time
intervals of transitions are rational numbers; (A4) the TPN
is bounded.

3. FAULT DIAGNOSIS GRAPH

In this section, we briefly introduce Fault Diagnosis Graph
(FDG), which has been proposed in [5], for diagnosis on
TPN systems.

The FDG is obtained from the State Class Graph (SCG)
[8, 9]. A state class is a pair α = 〈m, F 〉, where m is a
reachable marking and F is the conjunction of inequalities
representing the firing domains, i.e., the possible firing
intervals of transitions. If tj is an enabled transition at
m and has associated a firing interval [l, u], then there
exists an inequality l ≤ xj ≤ u in F , where xj is the time
delay when tj can be fired at m.

In the construction of the FDG from an SCG, paths
containing unobservable transitions are obtained from the
SCG and represented by edges in the FDG. States (nodes)
from the SCG are not added into the FDG if they are
not used in the diagnosis, i.e., not reached by firing of an
observable transition. Therefore, an edge in the FDG is
associated with a firing sequence, while in the SCG it is
associated with transitions.

Definition 5. A Fault Diagnosis Graph (FDG) is a 4-tuple
G = 〈Ω,�, α0,Γ〉, where 1) α0 = 〈m0, F0〉 is the initial
state class, 2) � is the set of edges, where α � α′ means
that ∃σu ∈ T ∗u and to ∈ To such that α′ is reachable from
α by firing σuto, 3) Ω = {α|α0 �∗ α}, where �∗ is the
reflexive and transitive closure of �, is the set of reachable
state classes, 4) Γ :�→ T ∗o ×{Q0×Q0∪{∞}}×{N,F,U}r
is the labeling function of edges.

The label of an edge corresponding to a firing sequence σ is
〈w, I,D〉, where w = O(σ), I is the firing domain of σ and
D encodes the firing of fault transitions in σ. Considering
a fault class T if : 1) if ∀t ∈ T if , t 6∈ σ, then D(i) = N and

2) if ∃t ∈ T if , t ∈ σ, then D(i) = F. The notation D(i) = U

will be used in Sec. 4. We denote the edge from α to α′

whose label is 〈w, I,D〉 as e : 〈α, 〈w, I,D〉, α′〉.

4. REDUCTION RULES ON FDG

The FDG is a reduced SCG from which some nodes are
removed. In this section, we propose some reduction rules
on the FDG, in order to further reduce its size.

4.1 Reduction Rules on TPN

In the analysis of systems based on untimed PN, structural
reduction rules are powerful tools [10]. For time models,
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