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a b s t r a c t

This paper presents a new windowing waveform relaxation method for time-fractional differ-

ential equations. Unlike the classical case, the proposed windowing method uses the history

part of the solution at each window. Second, it is the first time that a multi-domain finite

difference scheme together with a windowing method has been used for the time-fractional

differential equations, which makes the numerical scheme very efficient. Third, the paper pro-

vides an effective estimation on window length. Numerical results are given to further illus-

trate the theoretical analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus has been used widely to deal with some problems in fluid and continuum mechanics [1,2], viscoelastic

and viscoplastic flow [3] and anomalous diffusion [4–6]. The main advantage of fractional derivatives lies in that they are more

suitable for describing memory and hereditary properties of various materials and process in comparison with classical integer-

order derivative. In these years, numerical solutions to fractional differential equations have been investigated (for example, see

[3,7–11]).

Waveform relaxation (WR) method is an iterative method for solving ordinary differential equations. It was originally pro-

posed to simulate large circuits in [12]. The method has two main advantages. On the one hand, it can decouple a given large

differential system into a set of weakly coupled small subsystems. On the other hand, it can also decouple a complicated differ-

ential system into a set of simplified subsystems. Some authors have successfully applied the WR method into solving ordinary

differential equations [12–15], differential-algebraic equations [16], functional differential equations [17] and fractional differen-

tial equations [18–20].

Although the WR method of fractional differential equations is eventually convergent, the convergence rate is very slow

during the iterations on finite long intervals. One of the reasons of slow convergence is that the solution of fractional differential

equation at a certain time depends on the whole history of the solution at previous times. Considering the design of numerical

schemes, an immediate consequence is that the entire past trajectory of the numerical solution must be carried forward and used

in the current time step. This impacts both the storage and the cost of the numerical method, both of which may substantially

increase over time. Therefore, it is natural to accelerate the WR method in terms of both storage and computation.
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In this paper, we will develop the windowing technique following the idea of the windowing WR method proposed by

Leimkuhler and Ruehli in RC circuit simulation [15]. Basic idea of the windowing WR is that the interval of integration is split into

a series of subintervals, called windows, with iteration taking place on each window successively. During the last years, there has

been an explosion of research work on the analysis of the windowing WR method (for example, see [21,22]). However, there is

currently no development of windowing WR method for fractional differential equations.

This paper is an effort to meet the high computational demand of the time fractional differential equations (TFDEs). The

original windowing WR method for classic ODEs must be modified to take into account the memory effect of the TFDEs and we

propose to include the history part of the solution in the iteration step. On the one hand, the proposed windowing WR method

maintains the nice property of the original windowing WR method, i.e., the speed of convergence of the WR method can be

accelerated using suitable window. On the other hand, it has a particular advantage for the time fractional differential equations

in that the numerical solution on each subinterval is updated by using the history value after k iterations, thus the memory

restriction is relaxed. In this paper, we provide a convergence analysis of the new method, and give an effective estimation on

window length.

To implement the windowing method, one also needs to be cognizant of the challenge in the serial time stepping scheme for

the TFDEs. In this paper, we adopt a multi-domain finite difference method. The whole time domain will be decomposed into

subintervals, on which finite difference scheme is established.

The paper is organized as follows. In the next section, a brief background on the windowing WR method and the TFDEs will be

provided. In Section 3, we describe the new windowing WR method for the TFDEs and derive an effective estimation on window

length. Numerical results will be shown in Section 4.

2. Preliminaries

In this section, we provide background knowledge on the windowing WR method for classic ODEs and introduce some con-

cepts about fractional calculus.

2.1. The windowing WR method

Consider the following scalar ODE:{
dx(t)

dt
= f (x(t), t), t ∈ � = [0, T ],

x(0) = x0,

(2.1)

where f (x(t), t) : R
n × [0, T ] → R

n is a given function, x0 is a known initial value, and x(t) is to be computed. In the following,

we describe the basic settings of the original windowing WR method (cf. [21]), aiming to solve (2.1).

First, the time domain is decomposed into N elements:

0 = T0 < T1 < · · · < TN = T, �i = [Ti, Ti+1],

where each subinterval �i = [Ti, Ti+1] is called a window, and the lengths of windows are Hi = Ti+1 − Ti for i = 0, 1, . . . , N − 1.

Next, we introduce a splitting function F(·, ·, t) : R
n × R

n × [0, T ] → R
n satisfies

F(x(t), x(t), t) = f (x(t), t),

for any x(t) ∈ R
n. The splitting function is chosen to attempt to decouple the original system into easily solvable independent

subsystems. As an example, one can use the classic Jacobi or Gauss–Seidel scheme for F. The computation of WR solutions starts

at T0 and goes on for one window to another window until TN = T is reached. That is,⎧⎪⎪⎨⎪⎪⎩
dx(k+1)

i
(t)

dt
= F(x(k+1)

i
(t), x(k)

i
(t), t), t ∈ [Ti, Ti+1],

x(k+1)
i

(Ti) = x
(ki−1)
i−1

(Ti), k = 0, 1, . . . , ki − 1,

i = 0, 1, . . . , N − 1,

(2.2)

where x
(k−1)
−1

(0) = x0 and the initial guesses x
(0)
i

(t) ≡ x
(ki−1)

i−1
(Ti) on [Ti, Ti+1] for all i. By the existing convergence analysis (cf. [21]),

it has limki→+∞ x
(ki)
i

(t) = xi(t) for all i, where xi(t) denotes the exact solution of Eq. (2.1) on the subinterval �i. And the optimal

window length is of practice importance for the implementation of the windowing WR method.

2.2. Fractional differential equations

Let t ∈ (a, b). The fractional integral of order α of a given function x(t) is defined as

(aIαt x)(t) = 1

�(α)

∫ t

a

(t − τ)
α−1

x(τ )dτ, a < t ≤ b.
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