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a b s t r a c t

We develop a framework to study the role of variability in transport across a kinematically-

defined boundary defined as a streamline in a reference flow. Two complementary schemes

are presented: a graphical approach appropriate for analyzing specific cases of variability, and

an analytical approach for analyzing the effect of general fluid properties on variability. Spatio-

temporal nonlinear interaction between dynamic variability and the reference flow leads to

flux variability that governs the transport processes. A characteristic length-scale of dynamic

and flux variability can be expressed with the units of time using the flight time of the trajec-

tory along the kinematically defined boundary. The characteristic time-scale of the flux vari-

ability is that of dynamic variability with the units of time. The non-dimensional ratio of the

two characteristic scales is shown to be a critical parameter for evaluating the effectiveness of

variability on transport. The pseudo-lobe sequence along the reference streamline describes

spatial coherency of transport. The emergence of the pseudo-lobe sequence is likely to be

synchronous with the flux variability. Once a pseudo-lobe sequence is formed, the character-

istic length-scale of the flux variability regulates the width of the pseudo-lobes. In contrast,

for transport over a fixed time interval and spatial segment, the characteristic time-scale of

the dynamic variability regulates the width of the pseudo-lobes. Using a kinematic model, we

demonstrate the framework for two types of transports in a blocked flow of the mid-latitude

atmosphere: across the meandering jet axis and between the jet and recirculation cell.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Geophysical flows and dynamic variability

Large-scale geophysical flows are approximately two-dimensional and nearly incompressible. Quite often their time evolu-

tion may be described as unsteady fluctuations around a prominent time-mean field [8,17,19]. The instantaneous velocity field

u = (u, v)T of such flows at time t in two-dimensional x = (x, y)T space can be written as:

u(x, t) = ū(x) + u′(x, t), (1)
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where ¯{·} and {·}′ stand for time-averaged (“reference”) and residual fluctuation (“anomaly”) fields, respectively. The anomaly

field u′(x, t) of a large-scale geophysical flow may contain energetic dynamic signals that are spatially and temporally coherent.

A commonly used technique for the detection of such coherent evolution is the empirical orthogonal function (EOF), or princi-

pal component (PC) analysis. By the application of the singular value decomposition to the anomaly field, the EOF leads to an

orthogonal set of spatio-temporal modes:

u′(x, t) =
imax∑
i=1

ũi(x, t) =
imax∑
i=1

σiui(x) fi(t), (2)

where imax is the dimension of the anomaly field and ˜{·} stands for the spatial–temporal decomposition throughout this pa-

per. Both the spatial PC ui(x) and the temporal PC fi(t) are normalized so that the (ordered, positive) variance (σ i)
2 with

(σi)
2 ≥ (σi+1)2 ≥ 0 reflects the statistical significance of the mode i. The relative variance of the dynamic variability explained by

the mode i is (σi)
2/

∑imax
i

(σi)
2. Quite often the first few modes dominate and explain most of the variance of the dynamic vari-

ability. We note that another spatio-temporal decomposition technique uses spectral analysis, such as a normal mode analysis

decomposition [10].

As a single mode, ũi(x, t) = σiui(x) fi(t) describes a standing features of ui(x) in space that pulsates with fi(t) in time. We

call the spatial features in ui(x) the “dynamic eddies of mode i”. A positive or a negative eddy respectively corresponds to a

local region where flow is anti-cyclonic (clockwise) or cyclonic (counter-clockwise). Characteristic length-scale Li of the mode i

corresponds to the typical size of the dynamic eddies. Temporal coherency is defined by the positive and negative phases of fi(t)

based on its sign. If the variability of the mode is nearly periodic, then:

fi(t + Ti) ≈ − fi(t) . (3)

Thus starting with t0 when fi(t0) is local maximum, four phases of the standing features in ũi(x, t) over one cycle 2Ti are ũi(x, t0),

0, −ũi(x, t0), and 0 because fi(t0) ≈ − fi(t0 + Ti) and fi(t0 + Ti/2) ≈ fi(t0 + 3Ti/2) ≈ 0. Typically the lower the mode i is, and

hence the larger the variance (σ i)
2 is, the larger the characteristic scales for both ui(x) and fi(t), i.e., Li ≥ Li+1 and Ti ≥ Ti+1 for

(σi)
2 ≥ (σi+1)2.

The anomaly field u′(x, t) may also exhibit propagation of energetic dynamic eddies, which may be described by a pair of two

dynamic modes that have the same characteristic length-and time-scales as these dynamic eddies. For an illustration, consider a

simple propagating wave in the channel:

u′(x, t) = επ

(
l sin kπ(x − bt) cos lπy

k cos kπ(x − bt) sin lπy

)
. (4a)

This wave has the characteristic scales L = 1/b and T = 1/kb, with the phase speed b in x. The application of the EOF yields

analytically to a pair of the two modes:

ũ1(x, t) = σ1u1(x) f1(t) = επ

(
l sin kπx cos lπy

−k cos kπx sin lπy

)
cos kbπt (4b)

ũ2(x, t) = σ2u2(x) f2(t) = επ

(
l cos kπx cos lπy

k sin kπx sin lπy

)
sin kbπt, (4c)

where u′(x, t) = ũ1(x, t) + ũ2(x, t). The two modes have the same scales as the original, L1 = L2 = L and T1 = T2 = T . Both spatial

and temporal PCs are phase shifted by a half, due to the orthogonality of the PCs.

Conversely, the sum of two consecutive modes, ũi(x, t) + ũi+1(x, t), can represent propagation of dynamic eddies if the vari-

ance and scales of the two modes match, i.e., (σi)
2 ≈ (σi+1)2, Li ≈ Li+1, and Ti ≈ Ti+1. It naturally follows by the orthogonality

of the PCs that the dynamic eddies in ui(x) and ui+1(x) are spatially phase-shifted by Li/2(≈ L/i+1/2), while fi(t) and fi+1(t) are

temporally phase-shifted by Ti/2(≈ Ti+1/2). For t convenience later in Section 4, we chose:

fi(t) ≈ fi+1(t + Ti/2) . (5)

If the EOF returns fi(t) ≈ fi+1(t − Ti/2) ≈ − fi+1(t + Ti/2), then the transformation ui+1(x) → −ui+1(x) and fi+1(x) → − fi+1(x)

would satisfy the desired relation (5) given the fi(t) relation in (5). Then ũi(x, t) + ũi+1(x, t) exhibits propagation of dy-

namic eddies over 2L in 2T during one cycle, where L ≈ Li ≈ Li+1 and T ≈ Ti ≈ Ti+1. Starting at t0 when fi(t0) is local max-

imum and hence fi+1(t0) ≈ 0, four phases of propagating dynamic eddies in ũi(x, t) + ũi+1(x, t) during one cycle 2T are

ũi(x, t0), ũi+1(x, t0 + T/2), −ũi(x, t0), and −ũi+1(x, t0 + T/2) because fi(t0) ≈ fi+1(t0 + T/2) ≈ − fi(t0 + T ) ≈ − fi+1(t0 + 3T/2)

and fi+1(t1) ≈ fi(t0 + T/2) ≈ fi+1(t1 + T ) ≈ fi(t0 + 3T/2) ≈ 0. In the Rossby traveling wave example, the two modes defined by

(4b) and (4c) together represent the propagating wave as in (4a). In this study, we denote such a pair [i, i + 1] by the subscripts

in brackets, i.e., ũ[i,i+1](x, t) = ũi(x, t) + ũi+1(x, t).

1.2. Transport

Transport plays important roles in a wide range of geophysical systems. For a large-scale geophysical flow in which ū(x)

dominates u(x, t), transport occurs mainly streamwise with respect to ū(x). We call a streamline defined by ū(x) a “reference
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