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Abstract

Juamrie proposed a modified Riemann-Liouville derivative definition
and gave two basic fractional calculus formulae (u(t)v(t))(α) = u(α)(t)v(t)+
u(t)v(α)(t) and (f(u(t)))(α) = f ′

u
u(α)(t). We give two counterexamples to

show that Jumarie’s two formulae are not true. Respectively, all results
obtained in references by using Jumarie’s these two formulae are incorrect.
In the end, we give the corresponding formulae.

Keywords: counterexample, fractional calculus, modified Riemann-
Liouville’s derivative

1 Introduction

Jumarie proposed the following modified Riemann-Liouville fractional derivative[1-
5]:

f (α)(t) =
1

Γ(1 − α)

d

dt

∫ t

0

(t − x)−α(f(x) − f(0))dx. (1)

and gave some basic fractional calculus formulae, for example, formulae (4.12)
and (4.13) in [4]:

(u(t)v(t))(α) = u(α)(t)v(t) + u(t)v(α)(t), (2)

(f(u(t)))(α) = f ′
uu(α)(t). (3)

The last formula (3) has been applied to solve the exact solutions to some
nonlinear fractional order differential equations[6-9]. If this formula were true,
then we could take the transformation ξ = x − ktα

Γ(1+α) , and reduce the partial

derivative ∂αU(x,t)
∂tα to U ′(ξ). Therefore the corresponding fractional differential

equations become the ordinary differential equations which are easy to study.
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