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The performances of both controllers are compared to the Positive Position Feedback (PPF)
method. A comprehensive form of the nonlinear feedback controller that includes all three
approaches is considered for the closed-loop system; this form is then solved innovatively
using the Method of Multiple Scales. The particular form of the modulation equations for
each controller is obtained via the calculated comprehensive solution. Sensitivity analysis
is performed on the controller parameters of each approach, and the influence of the
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Integral Resonant Control parameters on the system response is studied. Results demonstrate that controller struc-
Nonlinear Integral Positive Position ture has the most salient role in the suppression performance. Even by selecting the opti-
Feedback mal control parameters for each approach, improvements in the control performances are

limited. The NIPPF controller delivers superior results compared to the other two
approaches in the frequency and time domains. Using this approach, not only is the vibra-
tion amplitude at the exact resonant frequency sufficiently suppressed, but the subsequent
peaks in the frequency domain are also reduced significantly compared to the PPF method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

High-amplitude resonant vibrations that occur in various structures and machines are always undesirable. Mechanical
malfunctions or structural failures are unpleasant results of these vibrations. Resonant vibrations, however, do not always
occur in a linear manner [1]. An example is nonlinear vibrations in the Atomic Force Microscopy and micro-cantilever beams
[2]. In micro-scale motions, nonlinearity of systems requires more consideration as more accurate measurements [3] or
robust controlled motions are needed [4].

Geometric nonlinearities (due to large displacements, strains, or rotations), nonlinear properties of materials, and nonlin-
ear external forces are the main causes of nonlinear vibrations. These nonlinearities are modeled and represented by non-
linear terms in the general equation of systems. Hence, the nonlinear vibrating system cannot be solved and controlled by
regular linear approaches. Two examples of applied methods are the open-loop and the adaptive nonlinear vibration control
[5,6]. In addition, Nonlinear Saturation Control (NSC) [7,8] is studied for nonlinear suppression in cantilever beams and more
complicated structures. Cubic velocity feedback [9] and nonlinear implementation of Positive Position Feedback (PPF)
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[7,10,11] are two other commonly used approaches. According to the results presented in [10,11], the PPF controller can suc-
cessfully reduce the vibration amplitude at resonant frequency. However, high-level suppression in the primary mode using
the PPF approach results in shifting the peak amplitude to left, right, or both sides of the resonant frequency in the
closed-loop system. In some cases, the amplitude of the shifted peak is the same as the amplitude of the resonant mode. This
implies that the vibration controller has failed to reduce the vibration amplitude in the working frequency domain. Delayed-
feedback has been combined with NSC in one study [12], and the cubic velocity feedback [13] in another study. The Recep-
tance method [14] and the Neural Network approach [15,16] have also been used for nonlinear active control of vibration.

The PPF controller was first presented and implemented for linear systems [17]. This approach was later studied in more
detail and optimized in other works such as in [18,19]. The problem with the PPF approach is that the closed-loop system has
low damping at non-resonant excitations. To overcome this drawback, a first-order compensator was combined with the
second-order compensator of the PPF for implementation of either position or acceleration feedbacks in the modified version
[20,21]. In terms of increasing the damping of the closed-loop system, the Integral Resonant Control (IRC) has also been
implemented for linear systems [22].

In this study, PPF, IRC and Nonlinear Integral Positive Position Feedback (NIPPF) approaches are implemented for nonlin-
ear oscillation attenuation. The PPF controller has previously been used in other studies [11]; however, its solution is utilized
here as a reference to assess the performance of the IRC and the NIPPF approaches. The NIPPF consists of a nonlinear second-
order positive feedback compensator, which is set parallel with a simple positive integrator. Nonlinearity in the NIPPF con-
troller structure originates from a cubic nonlinear position term in the structure of the second-order compensator. This term
increases the potential design flexibility to obtain a response that is not achievable by a linear controller. After explaining the
controllers, a comprehensive approximate solution for the closed-loop system is obtained by utilizing the Method of Multi-
ple Scales. Having the solution for the three controllers, the results are graphically demonstrated and discussed. In order to
understand the performance of the controllers in more detail, sensitivity analysis on the closed-loop system responses is
performed, and the influence of each parameter on the control output is plotted and discussed.

2. Nonlinear system model and controller design

In this section, first the dynamics of the nonlinear system is presented, and then the general form of the controller
solution for the NIPPF controller is introduced. The model for the nonlinear dynamics of a cantilever beam is governed by
a nonlinear partial differential equation. The primary resonant mode of the cantilever beam is considered not to be involved
in an internal resonance with other modes of the system. Single-mode discretization approach results in nonlinear
differential equation of [23]:

X(£) + ngX(t) + w?X(t) 4 o3 (£) + ()R (t) + px(£)*x(t) — f cos(Qt) = F (1), 1)

where x(t) is the variable of the main system, over-dot is the differentiation with respect to time, and F.(t) is the control input.
fis the amplitude and Q is the frequency of the external excitation. #; = 2 us;ws, where s and w; are the damping ratio and
resonant frequency of the system, respectively. « is the curvature nonlinearity coefficient, 8 and 7y are the inertia nonlinearity
coefficients.

The mathematical model for PPF, IRC, and NIPPF are described here to be used in the following sections. Frist, the model
for the PPF controller is:

() + mp¥(6) + wpy(t) = Zpx(0), (2)

where y(t) is the state-variable of the PPF controller, #, = 2y, where p, is the damping ratio, and wy, is the frequency of the
PPF compensator. /, > 0 is the controller gain, and feedback loop is closed by setting F.(t) = k,y(t) in Eq. (1), for &, > 0. For
the IRC, the lossy integrator is expressed as:

2(t) + wz(t) = Ax(t), 3)

where z(t) is the IRC controller’s variable, wjy is the lossy integrator’s frequency and /,> 0 is the IRC gain. Based on the
definition, the control law for the IRC is F.(t) = x,z(t), where x, > 0.

The feedback format of the NIPPF controller is designed such that it absorbs some of the vibration energy by increasing
the damping of the system, and compensates the resonant energy using the positive feedback concept. To achieve this goal, a
second-order resonant compensator is used alongside an integrator in the feedback loop. Since the nonlinearities of the sys-
tem shown in Eq. (1) are cubic, a cubic position term is added to the second-order subsection to compensate for nonlinear
terms. The second-order compensator does the most parts of the suppression at exact resonant frequency, while the
integrator increases the overall damping of the system. The NIPPF controller is described as:

(4)

ii(t) + nyte(t) + Fu(t) + sud(t) = Lux(t),

with the control law of:

Fo(t) = wu(t) + K, v(t). (5)
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