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a b s t r a c t

A novel variational formulation for thermoelasticity is proposed in this paper. The formu-
lation is based on the Hamilton–Pontryagin principle and the concept of temperature dis-
placement. Although there are many other papers that have a similar goal, most of the
proposed approaches are quite complicated, and contain assumptions that curtail their
applicability. The proposed variational principle in this paper is straightforward with no
extra assumptions and it is in conformity with the Clausius–Duhem inequality as a state-
ment of the second law of thermodynamics. Conservation laws for linear momentum and
energy, and the constitutive equation for thermoelasticity are consequences of this varia-
tional formulation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A variational description of a physical system consists of a statement that the variation of a specified functional is equal to
some fixed value, which can be customarily chosen to be zero. Attempts to state variational principles for natural laws date
back in history and the development of such variational principles have received attention due to their elegance and the
advantages they exhibit when solving practical problems. Various variational formulations for thermomechanical problems
have been suggested both for discrete and continuous systems in the past decades and authors have usually introduced new
variables and quantities in stating the principle from their respective viewpoints.

Many of the pioneering works in this direction have been due to M.A. Biot, who has published many significant papers in
this area [1–7]. In his variational principle, Biot introduced a quantity called the entropy displacement vector �S, in addition to
the common displacement vector �u, to describe the thermal part of his formulation. This quantity is defined by the following
equation,

@�S
@t
¼ 1

hr

@ �H
@t

; ð1Þ

where @ �H
@t is the rate of the heat flow �H, and hr is the temperature of the environment, that is assumed to be constant. He also

introduced a non-negative quadratic dissipation function in terms of generalized velocities that is proportional to the
entropy production. From these, he obtained a variational formulation, which yielded Euler–Lagrange equations that
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describe thermomechanical systems [6]. Biot’s formulation was applied to heat conduction [8], and some nonlinear problems
in heat transfer [9].

Kermidas and Ting [10] used temperature-based variables instead of entropy displacement. They assumed a linear rela-
tion between entropy and a dimensionless temperature that is defined to be

�h ¼ h� h0

h0
; ð2Þ

where h and h0 are instantaneous and initial absolute temperatures, respectively. These linear constitutive relations limit the
applicability of the approach to a local region of validity.

Some authors have suggested the futility of developing variational formulations for thermomechanical problems and
have proposed the use of other methods, like Galerkin projection, for approximating thermomechanical systems [11]. He
et al. [12] obtained a variational principle for coupled thermoelasticity with finite displacement using the semi-inverse
method for the field equations directly. To do this, they replaced the time derivative terms in the coupled heat conduction
equations with finite-difference approximations. Sawada [13] derived a variational principle for nonlinear and non-steady
(non-equilibrium) thermodynamic systems using the principle of maximum entropy production. He also applied this
approach to simulate a chemical structure with a growing random pattern [14]. Maugin and Kalpakides [15] formulated a
variational principle based on the inverse motion mapping and then explored the corresponding Euler–Lagrange equations.
Subsequently, they also derived a Hamiltonian formulation from the Lagrangian formulation. Yang et al. [16] developed a
variational formulation for general dissipative solids, where they made a distinction between the external temperature
and the equilibrium temperature. Apostolakis and Dargush [17] used the mixed variational principle for thermoelastic mate-
rials. Their resulting relations are only valid for problems in the linear regime because they assumed that the temperature
was constant in the energy equation.

In the present work, a new variational formulation for thermoelastic problems is proposed. This formulation contains no a
priori assumptions which limit its validity except for the most commonly accepted assumptions in thermoelasticity. In the
next section, we will review the necessary constraints on the thermomechanical responses to ensure that the second law of
thermodynamics is satisfied. In addition, the energy equation for thermoelasticity is also stated. In the third part, the
Lagrangian and Hamiltonian for a thermomechanical problem are derived. In the fourth section, the Hamilton–Pontryagin
principle is presented and finally, the variational formulation is proposed in the last section using this principle.

Nomenclature

i; j; k; . . . indices in continuum mechanics
b Body force per unit volume
e the strain tensor
p the momentum vector
pu mechanical momentum
ps thermal momentum
q thermomechanical generalized coordinate vector
t the stress tensor
u mechanical displacement vector
v the velocity vector
w mechanical velocity vector
r rate of heat supply
t time
F deformation gradient tensor
�S entropy displacement vector
�H heat flow
K̂ heat conductivity tensor
Q heat flux vector
Qi;i divergence of heat flux vector
P̂ first Piloa stress tensor
h instantaneous temperature
h0 initial temperature
hr temperature of environment
�h dimensionless temperature
s temperature displacement
q0 the density in reference configuration
ĝ entropy function
ŵ Helmholtz free energy
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