Y.-Y. Liao et al.

Paper

37-69% yields

Palladium-Catalyzed Selective Synthesis of 3-Hydroxy-2-oxindoles via Cascade C–H Cycloaddition and Oxidation of α -Aminoaceto-phenones

Α

Yan-Yan Liao Li Xu Ri-Yuan Tang^{*} Wen-Xu Zheng^{*}

Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China rytang@scau.edu.cn wzhenq@scau.edu.cn

Received: 18.05.2018 Accepted after revision: 06.07.2018 Published online: 08.08.2018 DOI: 10.1055/s-0037-1610537; Art ID: ss-2018-h0346-op

Abstract A novel method for the synthesis of 3-hydroxy-2-oxindole (3-hydroxyindolin-2-one) derivatives by palladium-catalyzed tandem C–H cycloaddition and oxidation of α -aminoacetophenone has been developed. In the presence of Pd(OAc)₂ and AgOAc, a variety of 3-hydroxy-2-oxindoles were synthesized in moderate yields. Control experiments show that the selective cycloaddition occurs prior to the oxidation is crucial for this successful chemical transformation.

 ${\rm Key}\ {\rm words}\ {\rm palladium,\ indole,\ cyclization,\ oxidation,\ C-H\ functionalization}$

The indolin-2-ones are an important class of drug skeleton that have a wide range of excellent biological activity, being found in many natural products as well as pharmaceuticals.¹ 3-Hydroxyindolin-2-ones derived from indolin-2-ones are privileged scaffolds for drug development,² which have been used as kinase inhibitors and protease inhibitors.³ Owing to their versatility in medicinal application, significant effort has been devoted to the development of synthetic methods for 3-hydroxyindolin-2-ones. The aldol reaction of indoline-2,3-diones is an effective pathway towards 3-hydroxyindolin-2-ones.⁴ However, indoline-2,3diones bearing functional groups are not easily accessible,⁵ the limited scope is insufficient for diversity synthesis of 3hydroxyindolin-2-ones. Endeavors for the pursuit of more efficient synthetic methods have been made in recent years.⁶⁻⁸ For example, in 2016, Liu and co-workers^{6a} disclosed an interesting tandem autoxidation/aldol reaction of 2-oxindoles with ketones leading to the formation of 3-hydroxyindolin-2-ones under mild reaction conditions (Scheme 1, eq. 1). In 2011, Kündig and co-workers^{7a} reported a Pd-catalyzed efficient synthesis of 3-hydroxyindolin-2-ones via an intramolecular nucleophilic addition of aryl halides to α -ketoamides. However, the methodology reguired the pre-bromination of substrates and the use of an expensive catalyst (Scheme 1, eq. 2). Direct C-H cyclization of α -ketoamides into 3-hydroxyindolin-2-ones has also been developed.⁸ This methodology requires the use of expensive Lewis acids such as scandium(III) triflate^{8a} or corrosive trifluoroacetic acid^{8b,c} (Scheme 1, eq. 3). Thus far, transition-metal-catalyzed C-H addition to ketones remains scare.⁹ As our ongoing interest is in the chemical transformation of α -aminoacetophenone derivatives,^{10,11} we envisioned that tandem C-H cycloaddition/oxidation of α-aminoacetophenones enables access to 3-hydroxyindolin-2ones. The reaction selectivity is crucial for this transformation because α -aminoacetophenones could be converted into an indole¹⁰ or an α -ketoamide,¹¹ and even undergo an oxidative cleavage of the C-N bond. Thus selective C-H cycloaddition to the ketone of α -aminoacetophenone remains challenging. A solution to this problem is to develop a transition-metal-catalyzed selective tandem C-H activation system.¹² Herein, we report a palladium-catalyzed selective synthesis of 3-hydroxyindolin-2-ones via tandem C-H cycloaddition and oxidation of α -aminoacetophenones (Scheme 1, eq. 4).

Our investigation began with the cyclization of α -aminoacetophenone **1a** under different reaction conditions (Table 1). Initially, Pd(OAc)₂ (10 mol%) and AgOAc (2 equiv) were applied as the catalyst and oxidant for the reaction development. The solvent effect, including toluene, dioxane, NMP, DCE, DMAc, DMSO, MeNO₂, *t*-BuOH, and MeCN, was evaluated at 100 °C for 12 hours (entries 1–9). MeCN is a preferable solvent for the reaction, affording product **2a** in 44% yield (entry 9). Other silver salts, such as AgOTf, Ag₂O, and AgBF₄, are not suitable for this transformation (entries 10–12). When the reaction was carried out in the presence of Pd(OAc)₂ and Cu(OAc)₂, α -ketoamide (*N*-methyl-2-oxo-

Y.-Y. Liao et al.

N,2-diphenylacetamide) was obtained as the major byproduct in 65% yield, whereas only 5% yield of desired product **2a** was obtained (entry 13).¹¹ Next, other palladium catalysts were also examined. Both Pd(OCOCF₃)₂ and PdCl₂ were suitable for this reaction, affording product **2a** in 45% and 25% yields, respectively (entries 14 and 15).

The mixed solvent of MeCN and t-BuOH was also studied (entries 16-18). The product yield was increased to 50% when the reaction was carried out in MeCN/t-BuOH (5:1) (entry 17). No target product was observed in the mixed solvent of MeCN and HFIP (entry 19). The mixed solvent of MeCN/EtOH was also effective, but only a 36% yield of product 2a was obtained (entry 20). The reaction temperature also affects the transformation. The reaction at 80 °C gave a lower yield (entry 21). To our delight, the product yield increased to 56% when the reaction was carried out at 120 °C (entry 22). The product yield increased to 65% when 3 equivalents of AgOAc were used (entry 24), whereas the reaction with 1.5 equivalents of AgOAc led to a lower yield (entry 23). In the absence of $Pd(OAc)_2$, the reaction did not occur (entry 25). Without the addition of AgOAc, only a 5% yield of product 2a was obtained (entry 26). These results demonstrate that both Pd(OAc)₂ and AgOAc are essential for this chemical transformation.

With the optimized reaction conditions in hand (Table 1, entry 24), we investigated the scope of this tandem C–H cycloaddition and oxidation reaction (Scheme 2). α -Amino-acetophenones bearing either an electron-withdrawing or electron-donating substituents on the benzene ring were tolerated to afford the corresponding products **2a–o** in moderate yields. Initially, substituents on the benzene ring adjacent to the ketone were examined. The methyl-substi-

tuted substrate delivered the desired product **2b** in 69% yield at 120 °C for 12 hours. The methoxy group appeared to have good compatibility, affording product **2c** in 55% yield. Halo groups, such as chloro and fluoro, were also tolerated, providing the corresponding products **2d** and **2e** in 51% and 56% yields, respectively. Next, the effect of substituents on the aniline motif was investigated (products **2f**–**m**). The presence of halo groups, such as bromo, fluoro, and chloro, on the benzene ring of aniline would decrease the

Table 1 Screening of Optimal Conditions^a

В

Entry	Catalyst	Oxidant (equiv)	Solvent	Isolated yield (%)
1	Pd(OAc) ₂	AgOAc (2)	toluene	15
2	Pd(OAc) ₂	AgOAc (2)	dioxane	18
3	Pd(OAc) ₂	AgOAc (2)	NMP	trace
4	Pd(OAc) ₂	AgOAc (2)	DCE	12
5	Pd(OAc) ₂	AgOAc (2)	DMAc	27
6	Pd(OAc) ₂	AgOAc (2)	DMSO	trace
7	Pd(OAc) ₂	AgOAc (2)	MeNO ₂	trace
8	Pd(OAc) ₂	AgOAc (2)	t-BuOH	trace
9	Pd(OAc) ₂	AgOAc (2)	MeCN	44
10	Pd(OAc) ₂	AgOTf (2)	MeCN	trace
11	Pd(OAc) ₂	Ag ₂ O (2)	MeCN	trace
12	Pd(OAc) ₂	$AgBF_4(2)$	MeCN	trace
13	Pd(OAc) ₂	$Cu(OAc)_2$ (2)	MeCN	5
14	$Pd(OCOCF_3)_2$	AgOAc (2)	MeCN	45
15	PdCl ₂	AgOAc (2)	MeCN	25
16	Pd(OAc) ₂	AgOAc (2)	MeCN/t-BuOH (2:1)	32
17	Pd(OAc) ₂	AgOAc (2)	MeCN/t-BuOH (5:1)	50
18	Pd(OAc) ₂	AgOAc (2)	MeCN/t-BuOH (10:1)	45
19	Pd(OAc) ₂	AgOAc (2)	MeCN/HFIP (5:1)	0
20	Pd(OAc) ₂	AgOAc (2)	MeCN/EtOH (5:1)	36
21 ^b	Pd(OAc) ₂	AgOAc (2)	MeCN/t-BuOH (5:1)	48
22 ^c	Pd(OAc) ₂	AgOAc (2)	MeCN/t-BuOH (5:1)	56
23¢	Pd(OAc) ₂	AgOAc (1.5)	MeCN/t-BuOH (5:1)	40
24 ^c	Pd(OAc) ₂	AgOAc (3)	MeCN/t-BuOH (5:1)	65
25°	-	AgOAc (3)	MeCN/t-BuOH (5:1)	trace
26 ^c	Pd(OAc) ₂	-	MeCN/t-BuOH (5:1)	5
_				

^a Reaction conditions: **1a** (0.2 mmol), H_2O (0.4 mmol, 2 equiv), solvent (2 mL), 100 °C, 12 h; unless otherwise stated. ^b At 80 °C.

° At 120 °C.

Download English Version:

https://daneshyari.com/en/article/7155605

Download Persian Version:

https://daneshyari.com/article/7155605

Daneshyari.com