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boundary of the synchronized states is analyzed using the Master Stability Function
approach for the case of identical oscillators (complete synchronization) and the Kuramoto
order parameter for the disordered case (phase synchronization). We find that, through a
linear coupling modeling electrical synapses, complete synchronization occurs in a system
of many nearest-neighbor or globally coupled identical oscillators, and in the case of non-
Hindmarsh—Rose neuron identical neurons it is stable even in the presence of a sprgad of the parameters. We find
Synchronization that the Hindmarsh-Rose neuronal models can synchronize when coupled through the
Master Stability Function action of potential variable or through the interaction by rapid flows of ions through the
membrane. The degree of connectivity of the network favors synchronization: in the global
coupling case, the threshold for the in-phase state stabilizes when the number of dynam-
ical units increases. The transition from disordered to the ordered state is a second order
dynamical phase transition, although very sharp.
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1. Introduction

Complex networks based on the interplay between complexity in the overall topology and local dynamical properties of
the coupled units, have proved a challenging task for the study of synchronization of dynamical units. Nevertheless, synchro-
nization of coupled oscillators can be nowadays tackled in a unified framework for different phenomena [1,2]. Neurological
systems are involved in several kinds of synchronization such as complete synchronization [3-6], lag synchronization [7,8],
phase synchronization [9,10] and quasi-synchronization [11,12]. In the study of synchronization, it is important to deter-
mine the stability of the synchronous state of a generic network topology, and hence a generic coupling configuration. Con-
sequently, powerful mathematical methods are being developed to seek the potential conditions for realization of the most
interesting form of dynamical behavior, such as synchronization, that can arise in these networks. These methods reverse the
question by studying when a synchronous state is stable, in terms of coupling schemes and of coupling strengths. The Master
Stability Function (MSF) approach has been introduced to address this question for arrays of coupled oscillators [13,14]. The
method has been extended to the case of complex networks of dynamical systems coupled with arbitrary topologies [15-22].
Quite naturally, the neuronal activity has emerged as a prominent example of network dynamics. Neurologically, the
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synchronous state is usually interpreted as intensity keeping of the neuronal response during the propagation over the net-
work. The study of perfect synchronization among identical models is just preliminary to the study of realistic disordered
models where perfect synchronization is impossible. However, the study of spiking-bursting synchronization from biophys-
ical models may be helpful to understand further the information processing in the brain [6].

The Hindmarsh-Rose (HR) complex dynamical system is a well-known model of a single neuron. In this model, the action
potentials firing, due to a sufficient stimulus, induces several behavior modes, and the system exhibits a deterministic chaos
for an appropriate choice of some neuronal parameters [23,26-30]. Moreover, it is known that two HR neurons can synchro-
nize when coupled by the action potential variables. Recently, Daliborg [31] reported on exponential fast synchronization of
two HR neurons with novel unidirectional coupling. It has been shown, through the Lyapunov function, that a single param-
eter bound is a sufficient criterion for the global stability of synchronous state. Multi-neuron cases have also been consid-
ered, when disorder afflicts a single parameter [32,33].

The chaotic activity suggests for the HR neuronal model is of a particular interest for the understanding of collective
dynamical behaviors. In the ideal case, a network of neurons consists of identical components. However, the neurons do
not have the same physical or chemical characteristics: many of the neuronal parameters are weakly modified by small per-
turbations [28]. Thus, if the network of identical HR neuronal models could be considered in a first approximation, a refined
model requires to consider non-identical neurons. Generally (and qualitatively) one considers two kinds of synapses: elec-
trical and chemical. Corson et al. [28,35] have recently studied the synchronization of HR neuronal model by an average term
proportional to the synaptic influence.

In this paper, we consider a network of HR neuronal models with nearest and global couplings. The coupling between
neurons is produced by the action potential variables [31,28,35], that model the interactions due to the rapid flow of ions
through the membrane. The coupling between neurons through the slow flows variables is not consider here, inasmuch
as we want to investigate the neurons during the firing activity.

In the case of a network of identical coupled neurons, the stability of synchronization is studied by the MSF [13], which
displays the emergence of some instabilities in the collective behavior, like de-synchronization phenomena [15] or spatial
temporal chaos. For the case of non-identical coupled neurons, the synchronization process is investigated using the Kuram-
oto order parameter [36-38], which assimilates a neuron in the network to an oscillator having its own phase and amplitude.

The paper is organized as follows: After the description of the HR model in Section 1, in Section 2 we describe the network
and the MSF approach, that allows to analyze the stability of the synchronization process in the network. In the same Section,
we check the results obtained from the MSF approach with direct numerical simulations. We present in Section 4 the net-
work of HR neuronal models in the presence of a spread of parameters. Thereafter, we study the condition of phase synchro-
nization using the Kuramoto order parameter. Section 5 deals with conclusions.

2. The Hindmarsh-Rose neuronal model

The HR model [23] of neuronal activity is aimed to study the spiking-bursting behavior of the potential membrane exper-
imentally observed in a single neuron. In fact the original Hodgkin—-Huxley equations cannot describe bursting and are only
able to reproduce spiking. In fact, the model was improved in 1984 [23] taking in account slow currents to describe bursting.
Other systems can also describe the neuronal bursting activity as the Rulkov map [24] and the Huber-Braun model [25].
Concerning HR model, the relevant variable is the membrane potential, x(t) (in dimensionless units). There are two more
variables, y(t) and z(t), which take into account the transport of ions across the membrane through the ion channels. The
transport of sodium and potassium ions occurs through fast ion channels, and its rate is described by y(t), the spiking var-
iable. The transport of other ions occurs through slow channels, and is taken into account through z(t), the bursting variable.
The corresponding mathematical model is a system of three first order nonlinear ordinary differential equations for the
dimensionless dynamical variables x(t), y(t), and z(t). They read:

X=y-xX+ax* —z+1,
y=1-dx* -y, (1)
Z=r[s(x —x1) — 2]

Here, the parameter r governs the different time scale between the fast and the slow dynamics. The applied current I, which
discriminates normal physiological neuronal activity, models the fluxes of ionic charges across the cytoplasm occurring
when a sufficient stimulus (that is in fact an electrical potential) is applied to the neuron. The fluxes can be controlled during
the experiments to leap out their influence on the action potential on the neuronal activity. The z(t) flux is a slow current
whose rate is of the order of the small parameter r (0 < r < 1) that governs the bursting and adaptation behavior of the
model, while s only governs adaptation. Through this study, we set the parameter of the 3D HR neuronal model as follows
[28,39]: @ =3, d = 5. The equilibrium of the two-dimensional HR system, x; = —1 (1 + v/5), corresponds to the threshold
potential to trigger bursts. The 3D HR neuronal model is known to exhibit many types of robust activities that are generic
for most models derived from the original Hodgkin—-Huxley equations. It also allows for some regulation of the bursting
activity that is referred as the square-wave bursting [27,40,41] in neuronal models [42-49]. Neuronal activity is a mixture
of two phases: (1) The rest phase, when the neuron does not emit any action potential (also known as the slow neuronal
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